Сенсорный экран. Сенсорные устройства

iPhone 2G был первым мобильным телефоном, управление которым полностью строилось на взаимодействии с сенсорным экраном. С момента его презентации прошло больше десяти лет, но многие из нас все еще не знают, как устроен Touchscreen. А ведь мы сталкиваемся с этим интуитивным средством ввода не только в смартфонах, но и в банкоматах, платежных терминалах, компьютерах, автомобилях и самолетах - буквально повсюду.
До тачскринов самым распространенным интерфейсом для ввода команд в электронные устройства были различные клавиатуры. Хотя, кажется, что у них с тачскринами нет ничего общего, на самом деле то, насколько сенсорный экран по принципам работы схож с клавиатурой, может удивить. Давайте рассмотрим их устройство в деталях.

Клавиатура представляет собой печатную плату, на которой устанавливается несколько рядов переключателей-кнопок. Вне зависимости от их конструкции, мембранной или механической, при нажатии каждой из клавиш происходит одно и то же. На компьютерной плате под кнопкой замыкается электрическая цепь, компьютер регистрирует прохождение тока в этом месте схемы, «понимает», какая клавиша нажата и выполняет соответствующую ей команду. В случае с сенсорным экраном происходит почти тоже самое.

Существует порядка десятка различных видов сенсорных экранов, однако большинство из этих моделей или давно устарело и не используется, или относится к экспериментальным и вряд ли когда-нибудь появится в серийных устройствах. Прежде всего, я расскажу об устройстве актуальных технологий, тех из них, с которыми постоянно взаимодействуете или хотя бы можете столкнуться в повседневной жизни.

Резистивный сенсорный экран

Резистивные сенсорные экраны изобретены еще в 1970 году и с тех пор изменились мало.
В дисплеях с такими сенсорами над матрицей располагается пара дополнительных слоев. Впрочем, оговорюсь, матрица здесь вовсе не обязательна. Первые резистивные сенсорные устройства не были экранами вовсе.

Нижний сенсорный слой состоит из стеклянной основы и называется резистивным слоем. На него наносится прозрачное металлическое покрытие, хорошо передающее ток, например, из такого полупроводника, как оксид индия-олова. Верхний слой тачскрина, с которым взаимодействует пользователь нажимая на экран, сделан из гибкой и упругой мембраны. Он называется проводящим слоем. В пространстве между слоями оставляют воздушную прослойку, либо равномерно усеивают его микроскопическими изолирующими частицами. По краям к сенсорному слою подводится четыре, пять или восемь электродов, связывающих его с датчиками и микроконтроллером. Чем больше электродов, тем выше чувствительность резистивного такчскрина, поскольку изменение напряжения на них постоянно отслеживается.


Вот экран с резистивным тачскрином включен. Пока ничего не происходит. Электрический ток свободно течет по проводящему слою, но когда пользователь дотрагивается до экрана, мембрана сверху прогибается, изолирующие частицы расступаются, и она касается нижнего слоя тачскрина, вступает в контакт. За этим следует изменение напряжения разом на всех электродах экрана.

Контроллер тачскрина обнаруживает изменения напряжения и считывает показания с электродов. Четыре, пять, восемь значений и все разные. По разнице в показаниях между правым и левым электродами микроконтроллер вычислит X-координату нажатия, а по различиям в напряжении на верхнем и нижнем электродах, определит Y-координату и, таким образом, сообщит компьютеру точку, в которой слои сенсорного слоя экрана соприкоснулись.

Резистивные сенсорные экраны могут похвастать длинным перечнем недостатков. Так, они в принципе не способны распознать двух одновременных нажатий, не говоря уже о большем числе. Они плохо ведут себя на холоде. Из-за необходимости в прослойке между слоями сенсора, матрицы таких экранов заметно теряют в яркости и контрастности, склонны бликовать на солнце, и в целом выглядят заметно хуже. Тем не менее, там, где качество изображения играет второстепенную роль, их продолжают применять в силу устойчивости к загрязнениям, возможности использования в перчатках и, что самое главное, низкой стоимости.

Такие средства ввода повсеместно монтируются в недорогих массовых устройствах, вроде информационных терминалов в общественных местах и все еще встречаются в устаревающих гаджетах, типа дешевых MP3-плееров.

Инфракрасный сенсорный экран

Следующим, куда менее распространенным, но, тем не менее, актуальным вариантом сенсорного экрана является инфракрасный тачскрин. Он не имеет ничего общего с резистивным сенсором, хотя и выполняет схожие функции.

Инфракрасный тачскрин сконструирован из массивов светодиодов и светочувствительных фотоэлементов, расположенных на противоположных сторонах экрана. Светодиоды подсвечивают поверхность экрана невидимым инфракрасным светом, образуя на ней нечто вроде паутины или координатной сетки. Это напоминает охранную сигнализацию, какой ее показывают в шпионских боевиках или компьютерных играх.

Когда к экрану что-то прикасается, не важно палец это, рука в перчатке, стилус, или карандаш, два или более луча прерываются. Фотоэлементы фиксируют это событие, контроллер тачскрина выясняет, какие из них недополучают инфракрасный свет и по их положению вычисляет зону экрана, в которой возникло препятствие. Остальное - сопоставить прикосновение с тем, какой элемент интерфейса находится на экране в этом месте - задача программного обеспечения.

Сегодня с инфракрасными сенсорными экранами можно столкнуться в тех гаджетах, чьи экраны обладают нестандартной конструкцией, там, где добавлять дополнительные сенсорные слои технически сложно или нецелесообразно - в электронных книгах на базе дисплеев E-link, например, Amazon Kindle Touch и Sony Ebook. Кроме того, устройства с подобными сенсорами из-за простоты и ремонтопригодности приглянулись военным.

Емкостный сенсорный экран

Если в резестивных сенсорных экранах компьютер регистрирует изменение проводимости, последовавшее за нажатием на экран, непосредственно между слоями сенсора, то емкостные сенсоры фиксируют прикосновение непосредственно.

Человеческое тело, кожа - хорошие проводники электричества и обладают электрическим зарядом. Обычно это замечаешь пройдясь по шерстяному ковру или сняв любимый свитер, а затем прикоснувшись к чему-либо металлическому. Все мы знакомы со статическим электричеством, испытывали его действие на себе и видели крошечные искры, срывающиеся с наших пальцев в темноте. Более слабый, незаметный обмен электронами между человеческим телом и различными проводящими поверхностями происходит постоянно и именно его фиксируют емкостные экраны.

Первые такие тачскрины назывались поверхностно-емкостными и были логичным развитием резистивных сенсоров. В них всего один проводящий слой, похожий на тот, что использовался ранее, устанавливался прямо поверх экрана. К нему также присоединялись чувствительные электроды, на этот раз по углам сенсорной панели. Следящие за напряжением на электродах датчики и их программное обеспечение были сделаны заметно чувствительнее и теперь могли улавливать малейшие изменения в течении электрического тока по экрану. Когда палец (другой проводящий ток предмет, например, стилус) касается поверхности с поверхностно-емкостным тачскрином, проводящий слой немедленно начинает обмениваться с ним электронами, а микроконтроллер это замечает.

Появление поверхностно-емкостных тачскринов стало прорывом, однако из-за того, что нанесенный прямо поверх стекла токопроводящий слой было легко повредить, они не были пригодны для устройств нового поколения.


Для создания первого iPhone потребовались проекционно-емкостные сенсоры. Этот тип тачскринов быстро стал наиболее распространенным в современной потребительской электронике: смартфонах, планшетах, ноутбуках, моноблоках и прочих бытовых устройствах.

Верхний слой экрана с тачскрином этого типа выполняет защитную функцию и может быть сделан из закаленного стекла, например, знаменитого Gorilla Glass. Ниже располагаются тончайшие электроды, образующие сетку. Поначалу их накладывали друг на друга в два слоя, затем для уменьшения толщины экрана стали располагать на одном уровне.

Выполненные из полупроводниковых материалов, в том числе уже упоминавшегося оксида индия-олова, эти токопроводящие волоски создают электростатическое поле в местах своего пересечения.


Когда палец касается стекла, за счет электропроводных свойств кожи он искажает локальное электрическое поле в местах ближайших пересечений электродов. Это искажение может быть измерено, как изменение емкости в отдельно взятой точке сетки.

Поскольку массив электродов делается достаточно мелким и плотным, такая система способна отслеживать касание очень точно и без проблем улавливает сразу несколько прикосновений. Кроме того, отсутствие дополнительных слоев и прослоек в бутерброде из матрицы, сенсора и защитного стекла положительно сказывается на качестве изображения. Правда, по той же причине, разбитые экраны, как правило, заменяются полностью. Однажды собранный воедино, экран с проекционно-емкостным сенсором чрезвычайно сложно поддается ремонту.

Сейчас преимущества проекционно-емкостных тачскринов не звучат, как что-то удивительное, но на момент презентации iPhone они обеспечили технологии колоссальный успех, несмотря на объективные минусы - чувствительность к загрязнениям и влажности.

Чувствительные к давлению сенсорные экраны - 3D Touch

Идейным предшественником сенсорных экранов, чувствительных к давлению, стала фирменная технология Apple, под названием Force Touch, применявшаяся в умных часах компании, MacBook, MackBook Pro и Magic Trackpad 2.

Опробовав на этих устройствах интерфейсные решения и различные сценарии использования распознавания силы нажатия, Apple начала внедрение похожего решения в свои смартфоны. В iPhone 6s и 6s Plus распознавание и измерение давления стало одной из функций тачскрина и получило коммерческое наименование 3D Touch.


Хотя в Apple и не скрывали, что новая технология лишь модифицирует привычные нам емкостные сенсоры и даже показали схему, в общих чертах объяснявшую принцип ее действия, подробности об устройстве сенсорных экранов с 3D Touch появились только после того, как первые iPhone нового поколения были разобраны энтузиастами.

Для того, чтобы научить емкостной сенсорный экран распознавать нажатия и различать несколько степеней давления, инженерам из Купертино потребовалось пересобрать бутерброд сенсорного экрана. Они внесли изменения в отдельные его части и добавили к емкостному еще один, новый слой. И, что интересно, делая это, они явно вдохновлялись устаревшими резистивными экранами.


Сетка емкостных сенсоров осталась без изменений, однако она была перенесена назад, ближе к матрице. Между набором электрических контактов, следящих за местом прикосновения к дисплею, и защитным стеклом был интегрирован дополнительный массив из 96 отдельных датчиков.


Его задача заключалась не в том, чтобы определить местоположение пальца на экране iPhone. С этим по-прежнему отлично справлялся емкостный тачскрин. Эти пластины необходимы для обнаружения и измерения степени изгиба защитного стекла. Компания Apple специально для iPhone заказала у Gorilla Glass разработку и производство такого защитного покрытия, которое бы сохраняло прежнюю прочность и, в то же время, было достаточно гибким, чтобы экран мог реагировать на давление.

На этой разработке можно было закончить материал, повествующий о сенсорных экранах, если бы не еще одна технология, которой несколько лет назад прочили большое будущее.

Волновые сенсорные экраны

Неожиданно, но они не используют электричество и даже не имеют ничего общего со светом. Технология Surface Acoustic Wave system для определения точки прикосновения применяет поверхностные акустические волны, распространяющиеся вдоль поверхности экрана. Ультразвук, создаваемый пьезоэлектрическими элементами по углам, слишком высок для того, чтобы его мог уловить человеческий слух. Он распространяется взад и вперед, многократно отражаясь от краев экрана. Звук анализируется на предмет аномалий, создаваемых прикасающимися к экрану предметами.

Недостатков у волновых сенсорных экранов не много. Они начинают ошибаться после сильного загрязнения стекла и в условиях сильного шума, но, при этом, в экранах с таким сенсором нет дополнительных слоев, увеличивающих толщину и влияющих на качество изображения. Все компоненты сенсора прячутся под рамкой дисплея. Кроме того, волновые сенсоры позволяют точно подсчитывать площадь соприкосновения экрана с пальцем или другим предметом и по этой площади косвенно рассчитать силу нажатия на экран.

Мы уже вряд ли столкнемся с этой технологией в смартфонах из-за нынешней моды на безрамочные дисплеи, но несколько лет назад компания Samsung экспериментировала с Surface Acoustic Wave system в моноблоках, а в качестве комплектующих для игровых автоматов и рекламных терминалов панели с акустическими тачскринами продаются и сейчас

Вместо заключения

За очень краткий срок тачскрины завоевали мир электроники. Несмотря на отсутствие тактильного отклика и другие свои недостатки, сенсорные экраны стали очень интуитивным, понятным и удобным методом ввода информации в компьютеры. Не в последнюю очередь, своим успехом они обязаны разнообразием технических реализаций. Каждая со своими преимуществами и недостатками, подходящая для своего класса устройств. Резистивные экраны для самых дешевых и массовых гаджетов, емкостные экраны для смартфонов и планшетов и настольных компьютеров с которыми мы взаимодействуем каждый день и инфракрасные тачскрины для тех случаев, когда конструкцию экрана следует оставить в неприкосновенности. В заключение, остается лишь констатировать, что сенсорные экраны с нами надолго, замены им в ближайшем будущем не предвидится.

Перед тем как рассмотреть емкостной или резистивный экран, требуется определиться с тем, что собой представляет сенсорная технология вообще. Тут все понятно: это экран, который определяет координаты нажатия. Если выражаться научно, то тут подразумевается метод управления интерфейсом, с помощью которого пользователь может нажимать непосредственно на интересующее место. На данный момент существует несколько методов реализации сенсорных экранов. Стоит рассмотреть каждый по отдельности.

Резистивная технология

Чтобы определиться, какой тип экрана, емкостный или резистивный, вам больше подходит, необходимо рассмотреть их. Второй вариант предполагает использование определенной производственной технологии. Снизу размещена панель из стекла, поверх которой находится прозрачная гибкая мембрана. На панели и мембране присутствует токопроводящее покрытие, то есть резистивное. При нажатии на экран происходит замыкание в определенной точке. Если знать напряжение на электродах с одной стороны и измерить его же на мембране, то получается отследить одну координату. Две координаты потребуют отключить одну группу электродов, чтобы включить другую. Это все в автоматическом режиме делает микропроцессор, как только происходит изменение напряжения на мембране. Резистивные экраны не позволяют реализовать мультитач.

Особенности резистивной технологии

Как и у любого другого типа реализованных устройств, тут имеются определенные черты, которые являются положительными или отрицательными в зависимости от ситуации. В качестве преимуществ обычно отмечается дешевое производство, а также возможность нажимать чем угодно, так как требуется только продавить мембрану. Точность позиционирования повышается за счет применения стилусов.

Негативные моменты

Основными недостатками можно назвать низкую степень пропускания света, высокую скорость появления царапин на поверхности, возможность нажатий в одну точку не более 35 миллионов раз, невозможность реализовать мультитач. Если вы не можете решить, емкостной или резистивный экран выбрать, то важно отметить еще и невозможность использования жестов типа скольжения, так как требуется нажать пальцем на экран и вести его не отпуская. В устройствах с такими элементами управления лучше использовать софт, требующий минимального использования «листающих» жестов.

Разбираясь в особенностях этой технологии, стоит отметить, что она может быть реализована несколькими способами, имеющими определенные различия. Емкостный сенсорный экран может быть просто емкостным и проекционно-емкостным. Первый вариант предполагает использование определенных элементов. Поверх стеклянной панели размещается прозрачный резистивный материал, например, сплав оксида олова или индия. По углам размещены электроды, которые подают небольшое переменное напряжение на проводящий слой. Если к экрану прикасаются токопроводящим предметом, то возникает утечка, и чем этот предмет ближе к электроду, тем ниже сопротивление экрана, то есть сила тока заметно увеличивается. А называется это все емкостной экран, так как переменный ток проводится предметом большей емкости. Чаще всего речь идет о пальце.

Особенности емкостных экранов

Как и прочие виды технологий, в данном случае речь идет о совокупности достоинств и недостатков. В качестве преимуществ перед остальными можно назвать высокую светопропускающую способность, значительный ресурс нажатий, простоту и удобство работы методом «листания». Недостатки здесь тоже имеются: требуется использовать только пальцы либо специализированные стилусы. Обычный емкостной экран не поддерживает технологию мультитач. Часто бывают случайные нажатия. К примеру, система может распознавать жест как «листание» даже в том случае, когда он не предполагается, так как сложно удержать палец строго на одном месте после нажатия.

Проекционно-емкостной сенсорный экран

В данном случае устройство отличается от предыдущих довольно сильно. Внутренняя сторона экрана представляет собой сетку электродов. Если происходит прикосновение предметом большей емкости к электроду, то образуется конденсатор, обладающий постоянной емкостью. Такие экраны используются на улице, так как позволяют устанавливать стекло, толщина которого достигает 18 мм, при этом удается получить не только максимально твердую поверхность, но и обеспечить вандалоустойчивость.

Особенности проекционно-емкостных сенсоров

В данном случае, как и во всех остальных, имеются определенные преимущества и недостатки, о которых следует знать. В качестве достоинств можно назвать возможность реализации мультитач, реагирование на нажатие в перчатке, высокую степень пропускания света, а также долговечность самого экрана. Такие экраны способны реагировать на приближение пальцев без факта нажатия. Порог, когда происходит завершение касания, обычно настраивается программно. Крайняя точка - это обычно сам экран, так как продавливать его совершенно бесполезно.

Если рассматривать проекционно-емкостной экран, то он обладает и определенными недостатками, в качестве которых принято называть сложную и довольно дорогую электронику, невозможность использования обычного стилуса, вероятность случайных нажатий.

Мультитач технология

Невозможно определить подходящий тип сенсорного экрана, емкостный или резистивный, не решив вопрос, касающийся реализации данной технологии. Мультитач - это возможность множественных касаний. Настоящая реализация предполагает отслеживание координат нескольких нажатий одновременно. Если в смартфоне или планшете реализована такая технология, то с его помощью можно имитировать игру на музыкальном инструменте, к примеру, гитаре. Следует разобраться с этим подробнее.

Можно взять обычный емкостный или резистивный экран. Если нажать сначала, например, в левый верхний угол, а потом, не отрывая палец, другим нажать в правый нижний, то электроникой в качестве координат будет определен центр экрана, то есть середина отрезка между парой этих касаний. Это будет видно, если запустить специальное приложение, отслеживающее координаты нажатия. Однако встает вопрос о том, а как же реализовано масштабирование картинок, если все равно распознается только одно нажатие?

Тут все просто. Это самый обычный программный трюк. Вы нажали на емкостной экран - электроника это определила. Это будет точка «А». Теперь, не отпуская пальца, вы нажимаете в другое место, которое будет точкой «В», получается, что в этот момент точка нажатия переместилась мгновенно в сторону, образовав «С». Именно в этот момент, когда фактически отпускания пальца не было, а точка нажатия мгновенно переместилась, программно обрабатывается в качестве мультитача. Далее, если точка «С» становится ближе к «А», то определяется сдвигание пальцев, то есть в случае с изображением, картинку надо уменьшить, и наоборот. Еще один момент: если точка «С» описывает дугу вокруг одной из точек, то программа определяет это как вращение одного пальца вокруг другого, что вызывает необходимость поворота картинки в соответствующую сторону.

Использование резистивного и емкостного экранов

Профессиональными разработчиками традиционно используется первый тип, так как он позволяет управлять любым предметом при различных погодных условиях. При реализации резистивной технологии используется большее количество датчиков на квадратный сантиметр в сравнении с емкостной, поэтому на дисплее можно отображать мельчайшие значки, на которые допускается нажимать иглой. К примеру, операционная система Windows Mobile разрабатывалась с учетом такой особенности, поэтому хорошо работает с резистивными экранами. Такие дисплеи почти нечувствительны к случайным нажатиям. Однако многие разработчики сейчас нацелены создавать приложения, ориентированные на емкостный сенсорный экран. Это уже становится проблемой для устройств, выполненных с применением резистивной технологии.

Степень защищенности

Важно понимать, что для планшетных компьютеров и коммуникаторов дисплей является самой уязвимой частью. Емкостной экран является более предпочтительным вариантом в плане надежности. Его производительность в любых условиях заметно выше, а резистивные модели могут отказать, к примеру, если нести их вниз стеклом. Емкостный экран - это отказоустойчивый вариант. Даже если он сломан, то и дальше будет исполнять свои функции. Если решать, емкостный или резистивный экран выбрать, то стоит отметить, что в полевых условиях первый будет оптимальным вариантом.

Выводы

Если подводить итоги, то можно отметить, что оба варианта реализации дисплеев имеют свои преимущества и недостатки. При том что емкостный экран - это целая совокупность возможностей, резистивный ориентирован на использование в определенных ситуациях. Обычно все зависит от интерфейса, используемого в гаджете. удобен в использовании, площадь его нажатия заметно меньше, чем у пальца, однако при хорошей отзывчивости поверхности удобно обходиться и без этого приспособления. Постоянное совершенствование резистивных дисплеев привело к тому, что появились модели вполне твердые, то есть стойкие к формированию царапин, но при этом и отзывчивые. Такие варианты стали весьма удобны в эксплуатации.

Необходимость использовать специальный стилус для емкостных экранов иногда доставляет немалое неудобство, так как он обычно не идет в комплекте с устройством. А резистивная технология предполагает и сопровождение специальным приспособлением, и возможность нажатия любым твердым предметом. Одна из причин, по которой многие выбирают емкостный сенсорный экран - мультитач, однако стоит отметить, что чаще всего это программная реализация, как уже было описано, и при должном подходе она может быть применена и для резистивного. Проекционно-емкостная технология пока еще не стала настолько доступной, как этого хотелось бы.

Уже практически весь мир высоких технологий захватила мода на сенсорные дисплеи. Сейчас практически на каждом плеере или сотовом телефоне имеется тачскрин, а общая сфера применения такой технологии производства дисплеев является намного более значительной. Сейчас на рынке представлены разные виды сенсорных экранов, работа которых зависит от того, какая технология ими используется.

Является прибором, ориентированным на ввод и вывод информации посредством дисплея, чувствительного к нажатиям. На экранах современных устройств не только демонстрируются изображения, но и появляются возможности вступать во взаимодействие с ним. Изначально подобная связь обеспечивалась посредством привычных для всех кнопок, потом появился иной вид манипулятора, названный мышью, сильно облегчивший процесс. Для работы этого прибора требуется горизонтальная поверхность, что совсем неудобно при использовании мобильного телефона. Тут и пригодилось дополнение к обычному экрану в виде тачскрина. Сенсорный элемент по своей сути не является экраном, он представляет собой дополнительное устройство, которое размещается снаружи поверх дисплея, при этом оно защищает и предназначается для ввода координат посредством прикосновения к нему устройства ввода или пальца. Существуют различные типы сенсорных экранов. Стоит рассмотреть их немного подробнее.

Типы сенсорных экранов и их использование в электронных устройствах

Первоначально технология тачскрина была использована для карманных компьютеров, однако на данный момент она получила заметно более широкое применение, от плееров до фотоаппаратов. Так как подобный механизм управления является очень удобным, он применяется для современных банкоматов, планшетных терминалов, различных электронных справочников и прочих устройств. Технология сенсорного экрана весьма удобна в тех случаях, когда необходим мгновенный доступ к управляемому устройству без какой-то подготовки и с максимальной интерактивностью: происходит смена элементов управления в зависимости от того, какая функция активируется.

Типы сенсорных экранов: емкостные, резистивные, проекционно-емкостные и прочие (менее популярные). Помимо этих видов существуют еще и инфракрасные и матричные дисплеи, однако их точность настолько невысока, что их сфера применения совсем ограничена.

Резистивные сенсорные экраны

Наиболее простыми устройствами являются именно эти дисплеи. Подобная панель включает в себя проводящую подложку и пластиковую мембрану, которые обладают определенным сопротивлением. Когда осуществляется нажатие на мембрану, производится замыкание с подложкой, что вынуждает проводящую электронику реагировать на сопротивление, которое возникло между краями этих элементов, вычисляя после этого координаты точки, на которую было произведено нажатие. Такие экраны весьма просто устроены, они дешевы, а также обладают отличной устойчивостью к загрязнениям. Основное достоинство такого типа сенсора состоит в том, что он чувствителен ко всяким прикосновениям. Недостаток заключается в высокой чувствительности к механическим повреждениям, что требует использования специальной Такие панели отлично работают при низких температурах.

Совсем по-иному работает технология емкостного сенсора. Тут за основу взят принцип того, что предмет большой емкости может проводить электрический ток. На стекло наносится электропроводный слой, а на все четыре угла подается переменное напряжение. При касании экрана заземленным предметом большей мощности происходит утечка тока. Управляющая электроника регистрирует эти утечки, определяя координаты.

В данной статье были кратко и понятно описаны основные типы сенсорных экранов, получивших наибольшую популярность.

Применение

Сенсорные экраны используются в платёжных терминалах , информационных киосках , оборудовании для автоматизации торговли, карманных компьютерах , мобильных телефонах , игровых консолях, операторских панелях в промышленности.

Достоинства и недостатки в карманных устройствах

Достоинства

  • Простота интерфейса.
  • В аппарате могут сочетаться небольшие размеры и крупный экран.
  • Быстрый набор в спокойной обстановке.
  • Серьёзно расширяются мультимедийные возможности аппарата.

Недостатки

Достоинства и недостатки в стационарных устройствах

Достоинства

В информационных и торговых автоматах, операторских панелях и прочих устройствах, в которых нет активного ввода, сенсорные экраны зарекомендовали себя как очень удобный способ взаимодействия человека с машиной. Достоинства:

  • Повышенная надёжность.
  • Устойчивость к жёстким внешним воздействиям (включая вандализм), пыле- и влагозащищённость.

Недостатки

Эти недостатки не позволяют использовать только сенсорный экран в устройствах, с которыми человек работает часами. Впрочем, в грамотно спроектированном устройстве сенсорный экран может быть не единственным устройством ввода - например, на рабочем месте кассира сенсорный экран может применяться для быстрого выбора товара, а клавиатура - для ввода цифр.

Принципы работы сенсорных экранов

Существует множество разных типов сенсорных экранов, которые работают на разных физических принципах.

Резистивные сенсорные экраны

Четырёхпроводной экран

Принцип действия 4-проводного резистивного сенсорного экрана

Резистивный сенсорный экран состоит из стеклянной панели и гибкой пластиковой мембраны. И на панель, и на мембрану нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Когда на экран нажимают, панель и мембрана замыкаются, и контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления и преобразует его в координаты прикосновения (X и Y). В общих чертах алгоритм считывания таков:

  1. На верхний электрод подаётся напряжение +5В, нижний заземляется. Левый с правым соединяются накоротко, и проверяется напряжение на них. Это напряжение соответствует Y-координате экрана.
  2. Аналогично на левый и правый электрод подаётся +5В и «земля», с верхнего и нижнего считывается X-координата.

Существуют также восьмипроводные сенсорные экраны. Они улучшают точность отслеживания, но не повышают надёжности.

Пятипроводной экран

Пятипроводной экран более надёжен за счёт того, что резистивное покрытие на мембране заменено проводящим (5-проводной экран продолжает работать даже с прорезанной мембраной). На заднем стекле нанесено резистивное покрытие с четырьмя электродами по углам.

Изначально все четыре электрода заземлены, а мембрана «подтянута» резистором к +5В. Уровень напряжения на мембране постоянно отслеживается аналогово-цифровым преобразователем . Когда ничто не касается сенсорного экрана, напряжение равно 5 В.

Как только на экран нажимают, микропроцессор улавливает изменение напряжения мембраны и начинает вычислять координаты касания следующим образом:

  1. На два правых электрода подаётся напряжение +5В, левые заземляются. Напряжение на экране соответствует X-координате.
  2. Y-координата считывается подключением к +5В обоих верхних электродов и к «земле» обоих нижних.

Особенности

Резистивные сенсорные экраны дёшевы и стойки к загрязнению. Резистивные экраны реагируют на прикосновение любым гладким твёрдым предметом: рукой (голой или в перчатке), пером, кредитной картой, медиатором. Их используют везде, где вандализм и низкие температуры не исключены: для автоматизации промышленных процессов, в медицине, в сфере обслуживания (POS-терминалы), в персональной электронике (КПК). Лучшие образцы обеспечивают точность в 4096×4096 пикселей.

Недостатками резистивных экранов являются низкое светопропускание (не более 85% для 5-проводных моделей и ещё более низкое для 4-проводных), низкая долговечность (не более 35 млн нажатий в одну точку) и недостаточная вандалоустойчивость (плёнку легко разрезать).

Матричные сенсорные экраны

Конструкция и принцип работы

Конструкция аналогична резистивной, но упрощена до предела. На стекло нанесены горизонтальные проводники, на мембрану - вертикальные.

При прикосновении к экрану проводники соприкасаются. Контроллер определяет, какие проводники замкнулись, и передаёт в микропроцессор соответствующие координаты.

Особенности

Имеют очень низкую точность. Элементы интерфейса приходится специально располагать с учётом клеток матричного экрана . Единственное достоинство - простота, дешевизна и неприхотливость. Обычно матричные экраны опрашиваются по строкам (аналогично матрице кнопок); это позволяет наладить мультитач . Постепенно заменяются резистивными.

Ёмкостные сенсорные экраны

Конструкция и принцип работы

Ёмкостный (или поверхностно-ёмкостный) экран использует тот факт, что предмет большой ёмкости проводит переменный ток .

Ёмкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом (обычно применяется сплав оксида индия и оксида олова). Электроды, расположенные по углам экрана, подают на проводящий слой небольшое переменное напряжение (одинаковое для всех углов). При касании экрана пальцем или другим проводящим предметом появляется утечка тока. При этом чем ближе палец к электроду, тем меньше сопротивление экрана, а значит, сила тока больше. Ток во всех четырёх углах регистрируется датчиками и передаётся в контроллер, вычисляющий координаты точки касания.

В более ранних моделях ёмкостных экранов применялся постоянный ток - это упрощало конструкцию, но при плохом контакте пользователя с землёй приводило к сбоям.

Ёмкостные сенсорные экраны надёжны, порядка 200 млн нажатий (около 6 с половиной лет нажатий с промежутком в одну секунду), не пропускают жидкости и отлично терпят не токопроводящие загрязнения. Прозрачность на уровне 90%. Впрочем, проводящее покрытие, расположенное прямо на внешней поверхности, всё ещё уязвимо. Поэтому ёмкостные экраны широко применяются в автоматах, лишь установленных в защищённом от непогоды помещении. Не реагируют на руку в перчатке.

Стоит заметить, что из-за различий в терминологии часто путают поверхностно- и проекционно-ёмкостные экраны. По классификации, применённой в данной статье, экран, например, iPhone является проекционно-ёмкостным , а не ёмкостным .

Проекционно-ёмкостные сенсорные экраны

Конструкция и принцип работы

На внутренней стороне экрана нанесена сетка электродов. Электрод вместе с телом человека образует конденсатор ; электроника измеряет ёмкость этого конденсатора (подаёт импульс тока и измеряет напряжение).

Особенности

Прозрачность таких экранов до 90%, температурный диапазон чрезвычайно широк. Очень долговечны (узкое место - сложная электроника, обрабатывающая нажатия). На ПЁCЭ может применяться стекло толщиной вплоть до 18 мм , что приводит к крайней вандалоустойчивости. На непроводящие загрязнения не реагируют, проводящие легко подавляются программными методами. Поэтому проекционно-ёмкостные сенсорные экраны широко применяются и в персональной электронике, и в автоматах, в том числе установленных на улице.

Стоит заметить, что из-за различий в терминологии часто путают поверхностно- и проекционно-ёмкостные экраны. По классификации, применённой в данной статье, экран iPhone (основоположник «бума технологии», примерно 2007 год) является проекционно-ёмкостным.

Сенсорные экраны на поверхностно-акустических волнах

Конструкция и принцип работы

Экран представляет собой стеклянную панель с пьезоэлектрическими преобразователями (ПЭП), находящимися по углам. По краям панели находятся отражающие и принимающие датчики. Принцип действия такого экрана заключается в следующем. Специальный контроллер формирует высокочастотный электрический сигнал и посылает его на ПЭП. ПЭП преобразует этот сигнал в ПАВ, а отражающие датчики его соответственно отражают. Эти отражённые волны принимаются соответствующими датчиками и посылаются на ПЭП. ПЭП, в свою очередь, принимают отражённые волны и преобразовывают их в электрический сигнал, который затем анализируется с помощью контроллера. При касании экрана пальцем часть энергии акустических волн поглощается. Приёмники фиксируют это изменение, а микроконтроллер вычисляет положение точки касания. Реагирует на касание предметом, способным поглотить волну (палец, рука в перчатке, пористая резина).

Особенности

Главным достоинством экрана на поверхностных акустических волнах (ПАВ) является возможность отслеживать не только координаты точки, но и силу нажатия (здесь, скорее, способность точно определять радиус или область нажатия), благодаря тому, что степень поглощения акустических волн зависит от величины давления в точке касания (экран не прогибается под нажатием пальца и не деформируется, поэтому сила нажатия не влечет за собой качественных изменений в обработке контроллером данных о координатах воздействия, который фиксирует только область, перекрывающую путь акустических импульсов). Данное устройство имеет очень высокую прозрачность, так как свет от отображающего прибора проходит через стекло, не содержащее резистивных или проводящих покрытий. В некоторых случаях для борьбы с бликами стекло вообще не используется, а излучатели, приёмники и отражатели крепятся непосредственно к экрану отображающего устройства. Несмотря на сложность конструкции, эти экраны довольно долговечны. По заявлению, например, американской компании Tyco Electronics и тайваньской фирмы GeneralTouch, они выдерживают до 50 млн касаний в одной точке, что превышает ресурс 5-проводного резистивного экрана. Экраны на ПАВ применяются, в основном, в игровых автоматах, в охраняемых справочных системах и образовательных учреждениях. Как правило, экраны ПАВ различают на обычные - толщиной 3 мм, и вандалостойкие - 6 мм. Последние выдерживают удар кулаком среднего мужчины или падение металлического шара весом 0.5 кг с высоты 1.3 метра (по данным Elo Touch Systems). На рынке предлагаются варианты подключения к компьютеру как через интерфейс RS232, так и через интерфейс USB. На данный момент большей популярностью пользуются контроллеры к сенсорным экранам ПАВ, поддерживающие и тот, и другой тип подключения - combo (данные Elo Touch Systems).

Главным недостатком экрана на ПАВ являются сбои в работе при наличии вибрации или при воздействии акустическими шумами, а также при загрязнении экрана. Любой посторонний предмет, размещённый на экране (например, жевательная резинка), полностью блокирует его работу. Кроме того, данная технология требует касания предметом, который обязательно поглощает акустические волны, - то есть, например, пластиковая банковская карточка в данном случае неприменима.

Точность этих экранов выше, чем матричных, но ниже, чем традиционных ёмкостных. Для рисования и ввода текста они, как правило, не используются.

Инфракрасные сенсорные экраны

Принцип работы инфракрасной сенсорной панели прост - сетка, сформированная горизонтальными и вертикальными инфракрасными лучами, прерывается при касании к монитору любым предметом. Контроллер определяет место, в котором луч был прерван.

Особенности

Инфракрасные сенсорные экраны боятся загрязнений и поэтому применяются там, где важно качество изображения, например, в электронных книгах . Из-за простоты и ремонтопригодности схема популярна у военных. Часто на таком принципе делают клавиатуры домофонов . Данный тип экрана применяется в мобильных телефонах компании Neonode.

Оптические сенсорные экраны

Стеклянная панель снабжена инфракрасной подсветкой. На границе «стекло-воздух» получается полное внутреннее отражение , на границе «стекло - посторонний предмет» свет рассеивается. Остаётся заснять картину рассеяния, для этого существуют две технологии:

Особенности

Позволяют отличить нажатия рукой от нажатий какими-либо предметами, есть мультитач . Возможны большие сенсорные поверхности, вплоть до классной доски .

Тензометрические сенсорные экраны

Реагируют на деформацию экрана. Точность тензометрических экранов невелика, зато они отлично выдерживают вандализм. Применение аналогично проекционно-ёмкостным: банкоматы, билетные автоматы и прочие устройства, расположенные на улице.

Сенсорные экраны DST

Основная статья: Dispersive Signal Technology

Сенсорный экран DST (Dispersiv́e Signal Technology) реагирует на деформацию стекла. Возможно нажатие на экран рукой или любым предметом. Отличительной особенностью является высокая скорость реакции и возможность работы в условиях сильного загрязнения экрана.

Индукционные сенсорные экраны

Индукционный сенсорный экран - это графический планшет со встроенным экраном. Такие экраны реагируют только на специальное перо.

Применяются, когда требуется реакция именно на нажатия пером (а не рукой): художественные планшеты класса high-end, некоторые модели планшетных ПК .

Сводная таблица

Матр 4-пров 5-пров Ёмк Пр-ёмк ПАВ ИК-сетка Опт Тензо DST Индукц
Функциональность
Рука в перчатке Да Да Да Да Да Да Да Да Да
Твёрдый проводящий предмет Да Да Да Да Да Да Да Да Да
Твёрдый непроводящий предмет Да Да Да Да Да Да Да
Мультитач Да 1 Да 7 Да Да Да 1 Да
Измерение силы нажатия Да Да Да Да Да
Предельная прозрачность, % 2 85 75 85 90 90 100 100 100 95 90
Точность 3 Низ Выс Выс Выс Выс Сред Низ Сред Низ Выс Выс
Надёжность
Срок жизни, млн. нажатий 35 10 35 200 ∞ 4 50 ∞ 5 ∞ 4 ??? ∞ 4 ∞ 4
Защита от грязи и жидкостей Да Да Да Да Да Да Да Да Да
Устойчивость к вандализму Да Да Да
Применение 6 Огран Огран Огран Помещ Улица Помещ Помещ Помещ Улица Помещ Огран

1 Поддерживается с ограничениями.
2 Если нужна только стеклянная панель, без каких-либо прозрачных проводящих плёнок - условно 95%. Если не нужна даже она (можно применить штатное покрытие экрана) - условно 100%
3 Высокая - до пикселя (точно отслеживает острое перо). Средняя - до нескольких пикселей (достаточная для нажатий пальцем). Низкая - крупными блоками экрана (невозможно рисование, требуются очень крупные элементы интерфейса).
4 Ограничивается надёжностью электроники
5 Ограничивается загрязнением датчика
6 Огран - аппаратура ограниченного доступа (персональная электроника, промышленная аппаратура). Помещ - общий доступ в охраняемом помещении. Улица - общий доступ на улице.
7 Программная эмуляция, обрабатывает максимум 2 нажатия.

См. также

  • Тачфон

В кинофильме «Крепкий орешек» герой Брюса Уиллиса с большим интересом рассматривает техническую новинку того времени - сенсорную панель для посетителей в Накатоми Плаза.

Ссылки

  • Замена тачскрина Инструкции по замене тачскринов

Примечания

  1. Touch Screen - History of the Touch Screen Computer Interface (англ.)
  2. Company history from Elographics to Elo TouchSystems, 1971 - present - Elo TouchSystems - Tyco Electronics
  3. HP History: 1980s (англ.)
  4. В резистивных экранах существует отдача при нажатии - это делает работу руками более комфортной. Кроме того, в некоторых телефонах удачное нажатие подтверждается вибрацией. Но такой отдачи, конечно же, недостаточно для того, чтобы на ощупь отличить один элемент интерфейса от другого.
  5. Мухин И. А.

Сенсорный дисплей, как устройство ввода-вывода информации, появился относительно давно. Еще в 90-х годах прошлого века можно было встретить в продаже КПК и другие портативные девайсы, оснащенные тачскрином. По мере развития технологий сенсорные смартфоны совершенствовались, к ним выдвигались новые требования, поэтому за последнее десятилетие сенсорные экраны серьезно изменились.

Резистивные сенсоры

Самые простые и доступные сенсоры для смартфонов. Они состоят из двух слоев, на которые нанесена сетка из прозрачного токопроводящего материала. Нижний выполнен из стекла (минерального или органического), а верхний – пластиковый. Между ними расположена тонкая воздушная прослойка. В момент касания происходит замыкание цепи между сетками разных слоев, и контроллер определяет координаты места нажатия.

Преимуществами резистивных экранов являются чувствительность к нажатию любым предметом, дешевизна, простота конструкции и точность. Главный недостаток – хрупкость: пластиковый верхний слой легко порезать или проколоть, после чего контакт нарушится и сенсор работать не будет.

Еще резистивные сенсоры обладают относительно низкой прозрачностью (до 80 %), поэтому, начиная года так с 2010-го, они выходят из употребления на смартфонах. Сегодня такой тачскрин можно встретить лишь в дешевых телефонах китайского производства.

Емкостные сенсоры

Емкостные сенсоры смартфонов состоят из стеклянной панели, покрытой прозрачным токопроводящим слоем, и четырех угловых датчиков. На нее подается слабый переменный ток, утечку которого при касании регистрируют сенсоры, вычисляя координаты нажатия. Помимо того, что реагируют такие тачскрины лишь на касание предмета с электрической проводимостью, они обладают малой точностью и не способны одновременно воспринимать несколько нажатий.

Емкостно-проекционные сенсоры

Наиболее распространенный на современных смартфонах вид сенсоров. Представляют собой развитие предыдущего типа. Вместо токопроводящего слоя на панель наносится сетка электродов, которые также находятся под напряжением. В момент касания пальца, выступающего в роли конденсатора, происходит утечка тока, расположение которой вычисляется контроллером. Такая конструкция делает возможным отслеживание нескольких касаний (на данный момент до 10, больше – не имеет смысла) одновременно.

Принципиальная конструкция таких тачскринов производителями мобильных устройств модифицируется. На современных OGS дисплеях смартфонов чувствительные электроды могут монтироваться прямо между кристаллами (или диодами) матрицы, а для устойчивости к повреждениям экран покрывают закаленным стеклом.

Ранее также практиковалось разделение защитного стекла и сенсорного слоя: электроды наносились на прозрачную пленку, которая сверху покрывалась стеклом. Подобный подход позволял сохранять работоспособность сенсора даже при наличии серьезных повреждений (трещины, сколы).



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!