Зависимость постоянного напряжения от переменного. Электрический ток постоянный и переменный

Одной из характеристик тока является напряжение. В каждом случае оно вырабатывается определенным источником. Рассмотрим подробней эту физическую величину и выясним, чем отличается постоянное напряжение от переменного.

Небольшое отступление

Вспомним, что такое «ток». Он представляет собой явление, при котором заряженные частицы перемещаются в определенном направлении. Если эти, скажем, электроны или ионы устремляются всегда в одну и ту же сторону, ток называют постоянным. А когда движение частиц периодически принимает другое направление, говорят о переменном токе.

Перейдем к напряжению. Его суть часто раскрывается по аналогии с водой. Последняя не течет сама по себе. Например, в наклонной трубе жидкость движется вниз под воздействием силы тяжести. И чем выше вода от земли, тем большей потенциальной энергией она обладает. Так же и с током: частицы «текут» под влиянием напряжения. При этом в начале своего пути они обладают большим потенциалом, а в конечной точке – меньшим.

Сравнение

Больший потенциал обозначается плюсом, меньший – минусом. Когда говорят про отличие постоянного напряжения от переменного, имеют в виду, остаются ли на своих местах «+» и «–» при движении заряженных частиц. В случае с постоянным напряжением полярность всегда одна и та же. Примером здесь является такой источник, как батарейка. Важно, что напряжение подобного рода характерно для постоянного тока, схематично обозначаемого прямой линией.

При переменном напряжении положительный и отрицательный потенциалы на каждом из концов проводника чередуются с прохождением времени. Соответствующий пример – обычная электросеть, к которой приборы подключаются через розетку. В этом случае действует переменный ток, графически представляемый волнистой линией. Его частота, к примеру 50 Гц, означает в том числе, сколько раз в секунду чередуются относящиеся к напряжению плюс и минус.

Лучше понять, в чем разница между постоянным и переменным напряжением, поможет следующая схема:

На первом графике продемонстрировано, что с течением времени (t) постоянное напряжение (U) сохраняет свою величину. На втором изображении видна динамика переменного напряжения: оно то нулевое, то максимальное, то минимальное. При этом отчетливо видно, что все значения периодически повторяются. Надо сказать, переменное напряжение часто, но не всегда приобретает свои параметры именно по синусоидальному закону. В других случаях изображение на графике имеет несколько иной вид.

В самом начале, давайте дадим короткое определение электрическому току. Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Ток - это движение электронов в проводнике, напряжение - это то, что приводит их (электроны) в движение.

Теперь рассмотрим такие понятия, как постоянный и переменный ток и выявим их принципиальные отличия.

Отличие постоянного тока от переменного

Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, "течет" в все время одну сторону. Например, по металлическим проводам от плюсового зажима источника напряжения к минусовому (в электролитах его создают положительные и отрицательные ионы). Сами же электроны движутся от минуса к плюсу, но ещё до открытия электрона договорились считать, что ток течет от плюса к минусу и до сих пор при расчетах придерживаются этого правила.

Чем же от постоянного отличается переменный ток (напряжение)? Из самого названия следует, что он меняется. Но - как именно? Переменный ток меняет за период как свою величину, так и направление движения электронов. В наших бытовых розетках - это ток с синусоидальными (гармоническими) колебаниями частотой 50 герц (50 колебаний в секунду).

Если рассмотреть замкнутую цепь на примере лампочки, то мы получим следующее:

  • при постоянном токе электроны будут течь через лампочку всегда в одном направлении от (-) минуса к (+) плюсу
  • при переменном направление движения электронов будет меняться в зависимости от частоты генератора. т. е. если в нашей сети частота переменного тока 50 герц (Hz), то направление движения электронов за 1 секунду поменяется 100 раз. Таким образом + и - в нашей розетке меняются местами сто раз в секунду относительно ноля . Именно поэтому мы можем воткнуть электрическую вилку в розетку "вверх ногами" и все будет работать.

Переменное напряжение в нашей бытовой розетке изменяется по синусоидальному закону. Что это значит? Напряжение от нуля увеличивается до положительного амплитудного значения (положительный максимум), потом уменьшается до нуля и продолжает уменьшаться дальше - до отрицательного амплитудного значения (отрицательный максимум), затем снова увеличивается, переходя через ноль и возвращается к положительному амплитудному значению.

Говоря другими словами, при переменном токе постоянно меняется его заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Получается, что за секунду электроны 100 раз меняют направление своего движения и свою полярность, с положительной на отрицательную (помните, что их частота составляет 50 герц - 50 периодов или колебаний в секунду?).



Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них - сложность конструкции самого генератора. А генератор переменного тока обладает более простой конструкцией, а потому прост и дешев в эксплуатации.

Дело в том, что одинаковую мощность можно передать высоким напряжением и маленьким током или наоборот: низким напряжением и большим током. Чем больше ток, тем больше нужно сечение провода, т.е. провод должен быть толще. Для напряжения толщина провода не важна, были бы изоляторы хорошие. Переменный ток (в отличие от постоянного) просто легче преобразовывать.

И это - удобно. Так по проводу относительно небольшого сечения электростанция может отправить пятьсот тысяч (а иногда и до полутора миллионов) вольт энергии при токе в 100 ампер практически без потерь. Потом, например, трансформатор городской подстанции "заберет" 500 000 вольт при токе в 10 ампер и "отдаст" в городскую сеть 10 000 вольт при 500 амперах. А районные подстанции уже преобразуют это напряжение в 220/380 вольт при токе порядка 10 000 ампер, для нужд жилых и промышленных кварталов города.

Разумеется схема упрощена и имеется в виду вся совокупность районных подстанций в городе, а не какая-то конкретно.

Персональный компьютер (ПК) работает по схожему принципу, но - в обратную сторону. Он преобразует переменный ток в постоянный а затем, при помощи , понижает его напряжение до значений, необходимых для работы всех компонентов внутри .

В конце 19-го века всемирная электрификация вполне могла пойти и другим путем. Томас Эдисон (считается, что именно он изобрел одну из первых коммерчески успешных ламп накаливания) активно продвигал свою идею постоянного тока. И если бы не исследования другого выдающегося человека, доказавшего эффективность тока переменного, то все могло бы быть по другому.

Гениальный серб Никола Тесла (некоторое время работавший у Эдисона), первым спроектировал и построил генератор многофазного переменного тока, доказав его эффективность и преимущество по сравнению с аналогичными разработками, работавшими с постоянным источником энергии.

Сейчас давайте рассмотрим "места обитания" постоянного и переменного тока. Постоянный, например, находится в нашем телефонном аккумуляторе или батарейках. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в местах его хранения (аккумуляторах).

Источники постоянного напряжения это:

  1. обычные батарейки применяемые в различных приборах (фонарики, плееры, часы, тестеры и т.д.)
  2. различные аккумуляторы (щелочные, кислотные и т. п.)
  3. генераторы постоянного тока
  4. другие специальные устройства, например: выпрямители, преобразователи
  5. аварийные источники энергии (освещение)

Например, городской электротранспорт работает на постоянном токе напряжением в 600 Вольт (трамваи, троллейбусы). Для метрополитена оно выше - 750-825 Вольт.

Источники переменного напряжения:

  1. генераторы
  2. различные преобразователи (трансформаторы)
  3. бытовые электросети (домашние розетки)

О том, как и чем измерять постоянное и переменное напряжение мы с Вами говорили вот , а напоследок (всем тем кто дочитал статью до конца) хочу рассказать небольшую историю. Озвучил ее мне мой шеф, а я перескажу с его слов. Уж больно она к нашей сегодняшней теме подходит!

Поехал он как-то в служебную командировку с нашими директорами в соседний город. Налаживать дружественные отношения с тамошними IT-шниками:) А сразу возле трассы там такое замечательное местечко есть: родник с чистой водой. Возле все обязательно останавливаются и воду набирают. Это, своего рода, уже традиция.

Местные власти, решив облагородить данное место, сделали все по последнему слову техники: вырыли сразу под родничком большую прямоугольную яму, обложили ее ярким кафелем, перелив сделали, подсветку светодиодную, бассейн получился. Дальше - больше! Сам родник "упаковали" в крапленую гранитную крошку, придали ему благородную форму, иконку над жерлом под стекло вмуровали - святое место, значится!

И последний штрих - поставили систему подачи воды на фотоэлементе. Получается, что бассейн всегда наполнен и в нем "булькает", а чтобы набрать воду непосредственно из родничка, нужно поднести руки с сосудом к фотоэлементу и оттуда - "проистекает" :)

Надо сказать, что по дороге к источнику наш шеф рассказывал одному из директоров, как это круто: новые технологии, вайфай, фотоэлементы, сканирование по сетчатке глаза и т.д. Директор был классическим технофобом, поэтому придерживался противоположного мнения. И вот, подъезжают они к родничку, подносят руки куда следует, а вода не течет!

Они и так, и сяк, а результата - ноль! Оказалось, что тупо не было напряжения в электрической сети, которая питала эту шайтан-систему:) Директор был "на коне"! Отпустил несколько "контрольных" фраз по поводу всех этих п...х технологий, таких же п...х элементов, всех машин вообще и данной конкретной в частности. Зачерпнул канистрой прямо из бассейна и пошел в машину!

Вот и получается, мы можем настроить все что угодно, "поднять" навороченный сервер, предоставить лучший и востребованный сервис, но, все равно, самый главный человек - это дядя Вася-электрик в ватнике, который одним движением руки может организовать полный skipped всей этой технической мощи и изяществу:)

Так что помните: главное - качественное электропитание. Хороший (источник бесперебойного питания) и стабильное напряжение в розетках, а все остальное - приложится:)

На сегодня у нас - все и до следующих статей. Берегите себя! Ниже - небольшое видео по теме статьи.

Электрический ток — это то, без чего не мыслима сегодня наша жизнь, и без чего люди могли обходиться еще каких-то 150 лет назад. Все, на чем строится бытие современного человека, основано на токе. Телевизоры, компьютеры, освещение, холодильники и стиральные машины имеют в своей основе явление электропроводности, и заменить его чем-то другим пока не представляется возможным.

Что же представляет из себя ток и какие бывают его виды, мы рассмотрим в этой статье.

Что такое ток

Итак, электрический ток — это целенаправленное движение электрических зарядов под действием электрического поля, а вернее, не самих зарядов, а их носителей, ведь заряды не могут существовать сами по себе, без какой-либо материальной основы. Одна движущаяся заряженная частица еще не ток, а вот две — уже ток. Правда, не ясно на каком расстоянии они должны быть друг от друга, чтобы быть током. Если, предположим, два электрона на расстоянии в километр друг от друга движутся в одну сторону с одинаковой скоростью, будут ли они током? Будут, но не током проводимости, а током конвекции.

По характеру токи бывают двух видов — постоянный и переменный, а протекать они могут в проводниках, в полупроводниках, в жидкостях и газах, и даже в вакууме.

Основными параметрами тока можно назвать напряжение и силу тока, а параметром проводящей среды — сопротивление, или проводимость.

Что нужно для того, чтобы тек ток

Для каждой среды минимальные условия протекания электрического тока свои. Например, для электролита достаточно, чтобы была лишь разность потенциалов, тогда как для проводящей электрической цепи необходима еще и замкнутость контура на себя . В космосе же могут просто пролетать две заряженные частицы, даже на огромном расстоянии друг от друга, и это будет ток, ибо в определении понятия «электрический ток» нет критерия удаленности зарядов, но всякое направленное движение заряженных частиц под действием электрического поля есть электрический ток.

Давайте разберем, что значит, под действием электрического поля. Дело в том, что в природе не существует изолированного электрического поля, ибо любое электрическое поле порождает магнитное и наоборот. В итоге, может существовать лишь электромагнитное поле, поэтому любое электромагнитное поле, разогнавшее заряженные частицы, автоматически порождает электрический ток, даже если его источником был постоянный магнит.

Что такое постоянный ток

Постоянный ток — это такое направленное движение заряженных частиц, параметры которого не меняются со временем . То есть, если сила тока, напряжение и сопротивление электрической цепи постоянны, а также ток течет все время только в одну сторону, то такой ток постоянен.

Для того, чтобы постоянный ток проходил в металле, необходимо, чтобы источник постоянного напряжения был замкнут на себя при помощи проводника (этого самого металла).

Постоянный ток используется сегодня практически во всей электронной технике, такой как компьютеры, мобильные телефоны, и вообще все, где есть большие блоки питания — это адаптеры, которые превращают переменный ток в постоянный.

Для того, чтобы получить постоянный ток, можно использовать химический источник энергии, который называют гальваническим элементом, можно применить аккумулятор а можно пользоваться генератором постоянного тока, который сегодня используют на производствах и на некоторых специфических объектах энергетики.

Переменный ток

Переменный ток в проводниках характеризуется тем, что он меняет свое направление и/или величину силы тока и напряжения, причем, он может делать это как периодически, так и не периодически.

Переменный ток запатентовал Никола Тесла и с тех пор он прочно вошел в нашу жизнь. Сейчас по проводам линий электроснабжения течет переменный ток, как и по нашим розеткам, и почти все бытовые электроприборы работают на переменном токе. Получить переменный ток можно при помощи специального источника, либо при помощи генератора (машины, которая преобразует движение в электричество).

Основные отличия переменного и постоянного тока

Давайте ответим на вопрос, почему вообще появилась необходимость создания переменного тока, ну был себе постоянный ток и был бы, ничего же плохого в нем не было. А дело вот в чем. Переменный ток нужен был для того, чтобы создать принципиально новый способ связи, такой, которого до этого еще не было на Земле — беспроводной способ передачи информации на расстоянии. Видимо почтовые голуби и телеграфы с телефонами уже не могли удовлетворять растущих потребностей цивилизации, а постоянный ток не может позволить электромагнитным волнам распространяться в пространстве . И в этом есть первое отличие этих двух видов токов.

Переменный ток может вызвать распространение электромагнитны волн, а постоянный нет. Все антенны существуют благодаря переменному току.

Во-вторых, появилась необходимость передавать электроэнергию на сверхдальние расстояния , а при транспортировке постоянного тока появлялись большие индукционные потери. Переменный ток значительно сокращает эти потери, и в этом второе важное отличие.

При передаче переменного тока по проводам, потерь меньше, чем при передаче постоянного.

В -третьих, переменный ток дает возможность конденсатору и катушке накапливать заряд, в результате чего появляется, как бы, батарейка, которой не нужны внутри электролиты. А обычные батарейки и аккумуляторы, наподобие тех, что стоят в мобильных телефонах и ноутбуках заряжаются от постоянного тока. И это третье отличие.

Переменный ток может заряжать только конденсатор и катушку, а постоянный — химический источник энергии(аккумулятор).

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках? Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток - трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните - Земле». Именно тогда и появился термин «электричество» .

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали - остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции , электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями .

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаметитый электромобиль Тесла работает на постоянном токе.

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Сначала напомним, что ток – это движение заряженных частиц.

Постоянный ток – это ток, который течет в одном направлении.

Типичный источник постоянного тока – гальванический элемент. Проще говоря, батарейка или аккумулятор. Один из древнейших артефактов, связанных с электричеством – багдадская батарейка, которой 2000 лет. Предполагают, что она давала ток напряжением 2-4 Вольта.


Где используется постоянный ток:

  • в питании большинства бытовых приборов;
  • в батарейках и аккумуляторах для автономного питания приборов;
  • для питания электроники автомобилей;
  • на кораблях и подводных лодках;
  • в общественном транспорте (троллейбусах, трамваях).

Проще всего представить постоянный ток наглядно, на графике. Вот как он выглядит:


Бытовые приборы работают на постоянном токе, но в розетки сети в квартире приходит переменный ток. Практически везде постоянный ток получается путем выпрямления переменного.

Переменный ток – это ток, который меняет величину и направление. Причем меняет в равные промежутки времени.

Переменный ток используется в промышленности и электроснабжении. Именно его получают на станциях и отправляют к потребителям. Уже на месте преобразование переменного электрического тока в постоянный происходит с помощью инверторов.

Переменный ток - alternating current (AC). Постоянный ток - direct current (DC). Аббревиатуру AC/DC можно увидеть на трансформаторных будках, где происходит преобразование. А еще это название одной отличной австралийской рок-группы.

А вот и наглядное изображение переменного тока.


Переменный ток течет в цепи в двух направлениях: туда и обратно. Одно из них считается положительным , а второе - отрицательным .

Так как величина тока меняется не только по направлению, но и по величине, не думайте, что в вашей розетке постоянно 220 Вольт. 220 - это действующее значение напряжения, которое бывает 50 раз в секунду. Кстати, в Америке используется другой стандарт переменного тока в сети: 110 Вольт и 60 Герц.

Война токов

Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.

Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.

В то время в Америку из Сербии приехал Никола Тесла , который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.


Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей - война токов.

Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.


Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами.

Переменный ток , в отличие от , непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего .

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле . Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами , т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б .

Стороны же в и г рамки - нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки .

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Используя , можно получить переменную ЭДС и, следовательно, переменный ток.

Переменный ток для промышленных целей и вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, - значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

На рис. 2 графически изображены постоянный и переменный токи . В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки - противоположного направления, которое принято называть отрицательным.

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Перейдем теперь к изучению графика переменной ЭДС . На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.


Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение.

Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5)

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой , а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными .

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока - самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока .

Период, амплитуда и частота - параметры переменного тока

Переменный ток характеризуется двумя параметрами - периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.



Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um - общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на , однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i, е и u - общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени - T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды , необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Измеряется единицей, называемой герцем.

Если мы имеем переменный ток , частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока - период, амплитуду и частоту , - которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту .

Круговая частота обозначается связана с частотой f соотношением 2пиf

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна 360°f.

Итак, мы пришли к выводу, что 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2пи радиан, где пи=3,14. Таким образом, окончательно получим 2пиf. Следовательно, чтобы определить круговую частоту переменного тока (), надо частоту в герцах умножить на посто янное число 6,28.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!