Программа цветовой маркировки радиодеталей. Радиоэлементы

Как расшифровать номинал сопротивления резистора или емкости конденсатора, обозначенный с помощью цветных полосок или точек, рассказывается в этой заметке

Введение. Цветовая маркировка для простых радиодеталей используется уже очень давно. По-видимому, наносить цветовые полосочки на корпуса проще, чем печатать на них цифры, особенно, когда корпуса круглые. Кроме того, при монтаже отпадает необходимость специально следить, чтобы маркировка не оказалась «лицом» к печатной плате - как деталь не поставь, всегда можно будет прочитать ее номинал. Честно признаюсь, за многие годы занятия радиоэлектроникой мне не встречалась цветовая маркировка где-либо кроме постоянных резисторов в круглых корпусах с проволочными выводами, наверное, для них вышеперечисленное наиболее актуально (корпус круглый, можно перевернуть по-разному при монтаже, да и наносить на круглый корпус цифры сложнее, чем полоски). Но теория гласит, что для конденсаторов все будет точно так же.

Шаг первый. Возьмем резистор в правую руку и внимательно посмотрим на него (см. фото). Четыре (может быть и пять) цветные полоски вокруг корпуса и есть эта самая цветовая маркировка, которую нам надо научиться читать, т.е переводить в сопротивление. Сопротивление выражается числом, значит первым делом надо научиться переводить цвета в цифры. Для этого используем приведенную таблицу.

* - только для множителя (см. ниже)

Первые две (или три, если всего пять) полоски обозначают значение сопротивления, третья (четвертая) - множитель (сколько нулей нужно справа приписать к значению), последняя - допуск (максимальное отклонение значения реального резистора от номинала, в процентах).

Шаг второй. Сразу возникает вопрос: ведь у резистора два одинаковых конца, поэтому число можно записать двумя способами? Для определенности производители придумали несколько вариантов пометить, какой конец будет началом:).
1. Первая полоска сдвинута ближе к краю корпуса (к выводу), чем последняя.
2. Последняя полоска толще, чем остальные.
Но мне больше нравится третий способ, он работает не всегда, но чаще всего вы сможете им воспользоваться:
3. Обратите внимание, что значение не может начинаться с трех цветов: серебристого, золотистого и черного (ноль в начале числа не пишут). Значит, если у одного вывода расположена серебряная или золотая полоска, то начинать следует с другой стороны. Это работает не всегда, но часто, поскольку подавляющее большинство приборов, с которыми вы будете работать, имеют допуски в 5 или 10 процентов.

Шаг третий. Выписываем значение сопротивления, затем дописываем справа столько нулей, какой множитель (например, если множитель оранжевый, то есть "3", то три нуля). Если множитель отрицательный, то не дописываем нули, а оставляем соответствующее количество знаков справа за запятой (один или два). Или, если вам так проще понять, умножаем значение на число 10 в степени множителя. Так или иначе, мы получили некое число - это сопротивление резистора в омах.

Последняя полоска, как уже говорилось, обозначает максимально возможное отклонение значения сопротивления, в процентах, от получившегося числа. Обычно схемы рассчитаны на 5-10%, если требуется что-то особо точное, об этом автор, скорее всего вам скажет. В крайнем случае, всегда есть омметр:)

В статье вы узнаете о том, какие существуют радиодетали. Обозначения на схеме согласно ГОСТу будут рассмотрены. Начать нужно с самых распространенных - резисторов и конденсаторов.

Чтобы собрать какую-либо конструкцию, необходимо знать, как выглядят в реальности радиодетали, а также как они обозначаются на электрических схемах. Существует очень много радиодеталей - транзисторы, конденсаторы, резисторы, диоды и пр.

Конденсаторы

Конденсаторы -- это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, через него проходит без особых трудностей. Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости - это Фарад. Она очень большая. На практике, как правило, используются которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Переменные конденсаторы

Существует и такой вид приборов, у которых емкость изменяется (в данном случае за счет того, что имеются подвижные пластины). Емкость зависит от размеров пластины (в формуле S - это ее площадь), а также от расстояния между электродами. В переменном конденсаторе с воздушным диэлектриком например, благодаря наличию подвижной части удается быстро менять площадь. Следовательно, будет меняться и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько отличается. Резистор, например, на них изображается в виде ломаной кривой.

Постоянные конденсаторы

Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить самые популярные типы диэлектриков:

  1. Воздух.
  2. Слюда.
  3. Керамика.

Но это касается исключительно неполярных элементов. Существуют еще электролитические конденсаторы (полярные). Именно у таких элементов очень большие емкости - начиная от десятых долей микрофарад и заканчивая несколькими тысячами. Кроме емкости у таких элементов существует еще один параметр - максимальное значение напряжения, при котором допускается его использование. Данные параметры прописываются на схемах и на корпусах конденсаторов.

на схемах

Стоит заметить, что в случае использования подстроечных или переменных конденсаторов указывается два значения - минимальная и максимальная емкость. По факту на корпусе всегда можно найти некоторый диапазон, в котором изменится емкость, если провернуть ось прибора от одного крайнего положения в другое.

Допустим, имеется переменный конденсатор с емкостью 9-240 (измерение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составит 9 пФ. А при максимальном - 240 пФ. Стоит рассмотреть более детально обозначение радиодеталей на схеме и их название, чтобы уметь правильно читать технические документации.

Соединение конденсаторов

Сразу можно выделить три типа (всего существует именно столько) соединений элементов:

  1. Последовательное - суммарная емкость всей цепочки вычислить достаточно просто. Она будет в этом случае равна произведению всех емкостей элементов, разделенному на их сумму.
  2. Параллельное - в этом случае вычислить суммарную емкость еще проще. Необходимо сложить емкости всех входящих в цепочку конденсаторов.
  3. Смешанное - в данном случае схема разбивается на несколько частей. Можно сказать, что упрощается - одна часть содержит только параллельно соединенные элементы, вторая - только последовательно.

И это только общие сведения о конденсаторах, на самом деле очень много о них можно рассказывать, приводить в пример занимательные эксперименты.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции - хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода - в частности, сажи). Впрочем, можно нанести даже графит - эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя

Основная характеристика резистора - это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Постоянные резисторы

Что касается таких элементов, то можно выделить наиболее распространенные типы:

  1. Металлизированные лакированные теплостойкие - сокращенно МЛТ.
  2. Влагостойкие сопротивления - ВС.
  3. Углеродистые лакированные малогабаритные - УЛМ.

У резисторов два основных параметра - мощность и сопротивление. Последний параметр измеряется в Омах. Но эта единица измерения крайне мала, поэтому на практике чаще встретите элементы, у которых сопротивление измеряется в мегаомах и килоомах. Мощность измеряется исключительно в Ваттах. Причем габариты элемента зависят от мощности. Чем она больше, тем крупнее элемент. А теперь о том, какое существует обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут обозначаться по-разному.

На отечественных схемах резистор - это небольшой прямоугольник с соотношением сторон 1:3, его параметры прописываются либо сбоку (если расположен элемент вертикально), либо сверху (в случае горизонтального расположения). Сначала указывается латинская буква R, затем - порядковый номер резистора в схеме.

Переменный резистор (потенциометр)

Постоянные сопротивления имеют всего два вывода. А вот переменные - три. На электрических схемах и на корпусе элемента указывается сопротивление между двумя крайними контактами. А вот между средним и любым из крайних сопротивление будет меняться в зависимости от того, в каком положении находится ось резистора. При этом если подключить два омметра, то можно увидеть, как будет меняться показание одного в меньшую сторону, а второго - в большую. Нужно понять, как читать схемы радиоэлектронных устройств. Обозначения радиодеталей тоже не лишним окажется знать.

Суммарное сопротивление (между крайними выводами) останется неизменным. Переменные резисторы используются для регулирования усиления (с их помощью меняете вы громкость в радиоприемниках, телевизорах). Кроме того, переменные резисторы активно используются в автомобилях. Это датчики уровня топлива, регуляторы скорости вращения электродвигателей, яркости освещения.

Соединение резисторов

В данном случае картина полностью обратна той, которая была у конденсаторов:

  1. Последовательное соединение - сопротивление всех элементов в цепи складывается.
  2. Параллельное соединение - произведение сопротивлений делится на сумму.
  3. Смешанное - разбивается вся схема на более мелкие цепочки и вычисляется поэтапно.

На этом можно закрыть обзор резисторов и начать описывать самые интересные элементы - полупроводниковые (обозначения радиодеталей на схемах, ГОСТ для УГО, рассмотрены ниже).

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы - это один кристалл, на котором может находиться великое множество радиоэлементов - и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник - это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам - в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Диоды и стабилитроны

Полупроводниковый диод имеет всего два электрода: катод (отрицательный) и анод (положительный). Но какие же существуют особенности у этой радиодетали? Обозначения на схеме можете увидеть выше. Итак, вы подключаете источник питания плюсом к аноду и минусом к катоду. В этом случае электрический ток будет протекать от одного электрода к другому. Стоит отметить, что у элемента в этом случае крайне малое сопротивление. Теперь можно провести эксперимент и подключить батарею наоборот, тогда сопротивление току увеличивается в несколько раз, и он перестает идти. А если через диод направить переменный ток, то получится на выходе постоянный (правда, с небольшими пульсациями). При использовании мостовой схемы включения получается две полуволны (положительные).

Стабилитроны, как и диоды, имеют два электрода - катод и анод. В прямом включении этот элемент работает точно так же, как и рассмотренный выше диод. Но если пустить ток в обратном направлении, можно увидеть весьма интересную картину. Первоначально стабилитрон не пропускает через себя ток. Но когда напряжение достигает некоторого значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации. Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах - в виде треугольника, а у его вершины - черта, перпендикулярная высоте.

Транзисторы

Если диоды и стабилитроны можно иногда даже не встретить в конструкциях, то транзисторы вы найдете в любой (кроме У транзисторов три электрода:

  1. База (сокращенно буквой "Б" обозначается).
  2. Коллектор (К).
  3. Эмиттер (Э).

Транзисторы могут работать в нескольких режимах, но чаще всего их используют в усилительном и ключевом (как выключатель). Можно провести сравнение с рупором - в базу крикнули, из коллектора вылетел усиленный голос. А за эмиттер держитесь рукой - это корпус. Основная характеристика транзисторов - коэффициент усиления (отношение тока коллектора и базы). Именно данный параметр наряду с множеством иных является основным для этой радиодетали. Обозначения на схеме у транзистора - вертикальная черта и две линии, подходящие к ней под углом. Можно выделить несколько наиболее распространенных видов транзисторов:

  1. Полярные.
  2. Биполярные.
  3. Полевые.

Существуют также транзисторные сборки, состоящие из нескольких усилительных элементов. Вот такие самые распространенные существуют радиодетали. Обозначения на схеме были рассмотрены в статье.

кликните по картинке чтобы увеличить

При практической работе, связанной в первую очередь с ремонтом электронной техники, возникает задача определить тип электронного компонента, его параметры, расположение выводов, принять решение о прямой замене или использовании аналога. В большинстве существующих справочников приводится информация по отдельным типам радиокомпонентов (транзисторы, диоды и т. д.). Однако ее недостаточно, и необходимым дополнением к таким книгам служит данное справочное пособие. Представляемая читателю книга по маркировке электронных компонентов содержит в отличие от издававшихся ранее подобных изданий, больший объем информации. В ней приведены данные по буквенной, цветовой и кодовой маркировке компонентов, по кодовой маркировке зарубежных полупроводниковых приборов для поверхностного монтажа (SMD), приведены данные по маркировке некоторых ранее не освещавшихся типов зарубежных компонентов, даны рекомендации по использованию и проверке исправности электронных компонентов.


Предисловие

1. Резисторы
1.1. Общие сведения
1.2. Обозначение и маркировка резисторов
Система обозначения
Маркировка резисторов отечественного производства
Маркировка резисторов зарубежного производства
Маркировка резисторных сборок
1.3. Технические данные и маркировка бескорпусных SMD резисторов
Общие сведения
Маркировка SMD резисторов
1.4. Особенности применения и маркировки переменных резисторов
Переменные и подстроечные резисторы фирмы BOURNS
1.5. Резисторы с особыми свойствами
Термисторы
Варисторы
2. Конденсаторы
2.1. Общие сведения
2.2. Обозначение и маркировка конденсаторов
Отечественная система обозначения
Маркировка конденсаторов
Кодовая цифровая маркировка
Цветовая маркировка
2.3. Особенности маркировки некоторых типов SMD конденсаторов
Керамические 5МЭ конденсаторы
Оксидные SMD -конденсаторы
Танталовые SMD -конденсаторы
Маркировка электролитических конденсаторов фирмы ТRЕС
Конденсаторы фирмы HITANO
Советы по практическому применению
2.4. Подстроечные конденсаторы зарубежных фирм
2.5. Другие типы конденсаторов
3. Катушки индуктивности
3.1. Общие сведения
3.2. Маркировка катушек индуктивности
Маркировка катушек индуктивности для поверхностного монтажа
3.3. Дроссели серий Д, ДМ, ДП, ДПМ
4. Маркировка кварцевых резонаторов и пьезофильтров
4.1. Маркировка резонаторов и фильтров отечественного производства
4.2. Особенности маркировки резонаторов и фильтров зарубежного производства...
4.3. Особенности маркировки фильтров производства фирмы Murata
5. Маркировка полупроводниковых приборов
5.1. Отечественная и зарубежные системы маркировки
полупроводниковых приборов
Маркировка R-МОП транзисторов Harris (Intersil)
Маркировка IGBT транзисторов Harris (Intersil)
Маркировка транзисторов фирмы International Rectifier
Маркировка полупроводниковых приборов фирмы Мо1ого1а
5.2. Диоды общего назначения
Типы корпусов и расположение выводов диодов
Цветовая маркировка отечественных диодов
Цветовая маркировка зарубежных диодов
Цветовая маркировка отечественных стабилитронов и стабисторов
Цветовая маркировка отечественных варикапов
Буквенно-цифровая кодовая маркировка SMD диодов зарубежного
производства
Цветовая маркировка SMD диодов в корпусах SOD-80,DO-213АА, DО-213АВ
Фотодиоды
Транзисторы
Особенности кодовой и цветовой маркировки отечественных транзисторов
6. Маркировка полупроводниковых SMD радиокомпонентов
6.1. Идентификация SMD компонентов по маркировке
6.2. Типы корпусов SMD транзисторов
6.3. Как пользоваться системой
Эквиваленты и дополнительная информация
7. Особенности тестирования электронных компонентов
7.1. Тестирование конденсаторов
7.2. Тестирование полупроводниковых диодов
7.3. Тестирование транзисторов
7.4. Тестирование одноперeходных и программируемых однопереходных
транзисторов
7.5. Тестирование динисторов, тиристоров, симисторов
7.6. Определение структуры и расположения выводов транзисторов,
тип которых неизвестен
7.7. Тестирование полевых МОП-транзисторов
7.8. Тестирование светодиодов
7.9. Тестирование оптопар
7.10. Тестирование термисторов
7.11. Тестирование стабилитронов
7.12. Расположение выводов транзисторов
Приложение 1. Краткие справочные данные по зарубежным диодам
Приложение 2. Краткие справочные данные по зарубежным транзисторам
Приложение 3. Типы корпусов СВЧ транзисторов

Радиоэлементы (радиодетали) – это электронные компоненты, собранные в составные части цифрового и аналогового оборудования. Радиодетали нашли свое применения в видеотехнике, звуковых устройствах, смартфонах и телефонах, телевизорах и измерительных приборах, компьютерах и ноутбуках, оргтехнике и прочей технике.

Виды радиоэлементов

Радиоэлементы, соединенные посредством проводниковых элементов, в совокупности образуют электросхему, которая еще может носить название «функциональный узел». Совокупность электроцепей из радиоэлементов, которые расположены в отдельном общем корпусе, называется микросхемой – радиоэлектронной сборкой, она может выполнять множество разных функций.

Все электронные компоненты, использующиеся в бытовой и цифровой технике, относятся к радиодеталям. Перечислить все подвиды и виды радиодеталей довольно проблематично, так как получится огромный список, который постоянно расширяется.

Для обозначения радиодеталей на схемах применяют как графические условные обозначения (УГО), так и буквенно-цифровые символы.

По методу действия в электрической цепи их можно разделить на два типа:

  1. Активные;
  2. Пассивные.

Активный тип

Активные электронные компоненты полностью зависят от внешних факторов, при воздействии которых меняют свои параметры. Именно такая группа привносит в электроцепь энергию.

Выделяют следующих основных представителей этого класса:

  1. Транзисторы – это триод-полупроводник, который посредством входного сигнала может контролировать и управлять электронапряжением в цепи. До появления транзисторов их функцию выполняли электронные лампы, которые потребляли больше электроэнергии и были некомпактными;
  2. Диодные элементы – полупроводники, проводящие электроток только в единственном направлении. Имеют в своем составе один электрический переход и два вывода, производятся из кремния. В свою очередь, диоды делятся по диапазону частот, конструкции, назначению, габаритам переходов;
  3. Микросхемы – составные компоненты, в которых произведена интеграция конденсаторов, резисторов, диодных элементов, транзисторов и прочего в полупроводниковую подложку. Они предназначаются для преобразования электрических импульсов и сигналов в цифровую, аналоговую и аналогово-цифровую информацию. Могут производиться без корпуса или в нем.

Существует еще множество представителей данного класса, однако используются они реже.

Пассивный тип

Пассивные электронные компоненты не зависят от протекающего электротока, напряжения и прочих внешних факторов. Они могут или потреблять, или аккумулировать энергию в электроцепи.

В этой группе можно выделить следующие радиоэлементы:

  1. Резисторы – устройства, которые занимаются перераспределением электротока между составными элементами микросхемы. Классифицируются по технологии изготовления, методу монтажа и защиты, назначению, вольт-амперной характеристике, характеру изменения сопротивления;
  2. Трансформаторы – электромагнитные приспособления, служат для преобразования с сохранением частоты одной системы электротока переменного типа в другую. Состоит такая радиодеталь из нескольких (или одной) проволочных катушек, охваченных магнитным потоком. Трансформаторы могут быть согласующие, силовые, импульсные, разделительные, а также устройства тока и напряжения;
  3. Конденсаторы – элемент, служащий для аккумулирования электротока и последующего его высвобождения. Состоят из нескольких разделенных диэлектрическими элементами электродов. Конденсаторы классифицируются по виду диэлектрических компонентов: жидкие, твердые органические и неорганические, газообразные;
  4. Индуктивные катушки – устройства из проводника, которые служат для ограничения электротока переменного типа, подавления помех и накопления электроэнергии. Проводник помещен под изоляционный слой.

Маркировка радиодеталей

Маркировка радиодеталей обычно совершается производителем и находится на корпусе изделия. Маркирование подобных элементов может быть:

  • символьным;
  • цветовым;
  • символьным и цветовым одновременно.

Важно! Маркирование импортных радиодеталей может существенно отличаться от маркировки однотипных элементов отечественного производства.

На заметку. Каждый радиолюбитель при попытках расшифровать тот или иной радиокомпонент прибегает к справочнику, так как сделать это по памяти не всегда получается из-за огромного модельного разнообразия.

Обозначение радиоэлементов (маркировка) европейских изготовителей часто происходит по определенной буквенно-цифровой системе, состоящей из пяти символов (три цифры и две буквы – для изделий широкого применения, две цифры и три буквы – для спецаппаратуры). Цифры в такой системе определяют технические параметры детали.

Европейская система маркировки полупроводников широкого распространения

1-ая буква – кодировка материала
A Основной компонент – германий
B Кремний
C Соединение галлия и мышьяка – арсенид галлия
R Сульфид кадмия
2-ая литера – вид изделия или его описание
A Диодный элемент малой мощности
B Варикап
C Транзистор малой мощности, работающий на низких частотах
D Мощный транзистор, функционирующий на низких частотах
E Туннельный диодный компонент
F Высокочастотный транзистор малой мощности
G Более одного прибора в едином корпусе
H Магнитный диод
L Мощный транзистор, работающий на высокой частоте
M Датчик Холла
P Фототранзистор
Q Световой диод
R Переключающийся прибор малой мощности
S Переключательный транзистор маломощный
T Мощное переключающееся устройство
U Транзистор переключательный мощный
X Умножительный диодный элемент
Y Выпрямительный диодный элемент высокой мощности
Z Стабилитрон

Обозначение радиодеталей на электросхемах

Из-за того, что существует огромное множество различных радиоэлектронных компонентов, были приняты на законодательном уровне нормы и правила их графического обозначения на микросхеме. Эти нормативные акты называются ГОСТами, где прописана исчерпывающая информация по виду и размерным параметрам графического изображения и дополнительным символьным уточнениям.

Важно! Если радиолюбитель составляет схему для себя, то ГОСТами можно пренебречь. Однако если составляемая электросхема будет подаваться на экспертизу или проверку в различные комиссии и госорганы, то рекомендуется сверить все со свежими ГОСТами – они постоянно дополняются и изменяются.

Обозначение радиодеталей типа «резистор», находящееся на плате, на чертеже выглядит прямоугольником, рядом с ним с литерой «R» и цифрой – порядковым номером. Например, «R20» обозначает, что резистор на схеме 20-ый по счету. Внутри прямоугольника может прописываться его рабочая мощность, которую он может долгое время рассеивать, не разрушаясь. Ток, проходя через этот элемент, рассеивает конкретную мощность, тем самым нагревает его. Если мощность будет больше номинальной, то радиоизделие выйдет из строя.

Каждый элемент, подобно резистору, имеет свои требования к начертанию на чертеже цепи, условным буквенным и цифровым обозначениям. Для поиска таких правил можно использовать разнообразную литературу, справочники и многочисленные ресурсы интернета.

Любой радиолюбитель должен понимать виды радиодеталей, их маркировку и условно графическое обозначение, так как именно такие знания помогут ему правильно составить или прочесть существующую схему.

Видео



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!