Спектрофотометр виды. Спектрофотометры, их устройство

Спектрофотометрия — это метод, с помощью которого измеряют химический состав изучаемого вещества. Спектрофотометр пропускает через образец поток световых лучей любой длины и диапазона.

Образцом в данном случае выступает раствор изучаемого вещества в жидкости, размещенный в прозрачном для излучения кювете. Причем спектрофотометры выпускаются как с наличием источника УФ - лучей, инфракрасных лучей, так и работающие в оптическом диапазоне, который виден человеку.

С помощью этого прибора измеряют отношение двух потоков оптического излучения. Один поток падает на исследуемый образец, а другой поток испытывает какое - либо взаимодействие с данным образцом. Спектрофотометр производит измерения для различных длин волн оптического излучения. В результате этих операций получается спектр отношений потоков. Данные приборы используются в медицине и в промышленной отрасли для контроля технологических процессов. С помощью спектрофотометра определяют состав и наличие примесей в различных жидкостях, таких как медицинские растворы, вода, продукты нефтяной и химической промышленности, продукция лакокрасочного производства.

Как устроен спектрофотометр

Оптическая схема простейшего спектрофотометра приведена на рисунке. В качестве источников излучения в приборах наиболее широко используются газоразрядная водородная лампа и вольфрамовая лампа накаливания.

Газоразрядная водородная лампа обеспечивает сплошной спектр в ультрафиолетовой области и особенно удобна для измерений от 200 до 350 нм.

Вольфрамовая лампа накаливания используется для работы в ближней ультрафиолетовой области, видимой и ближней инфракрасной области, т. е. в пределах от 320 до 3000 нм. Ртутные лампы обеспечивают очень высокую интенсивность в ультрафиолетовой и видимой областях, давая интенсивную линию спектра ртути и сплошное излучение. Ртутные лампы необходимо нагревать в течение 15 минут, прежде чем они начнут давать постоянное излучение.

Недостатком является высокая температура, которую ртутная лампа приобретает при работе.

Ксеноновые разрядные лампы применяются в ряде приборов для измерений в области от 200 до 900 нм.


Монохроматор
- приспособление для изолирования очень узкой полосы излучения из источника света. Смешанное излучение проходит через щель в монохроматор, в котором луч разделяется на спектр при помощи призмы или дифракционной решетки. Этот спектр фокусируется на выход щели. Путем вращения призмы или дифракционной решетки можно выделить определенную часть спектра, которая через щель направляется в кюветное отделение, где находится раствор исследуемого вещества.

Классификация спектрофотометров

Учитывая назначение и конструкцию спектрофотометров, их можно разделить на три группы: простые, двуволновые, приборы с фотодиодной решеткой.

Эти приборы могут быть стационарными (самый популярный - ). Такие виды эксплуатируются только в лабораториях для проведения различных технологических процессов.

Второй вид спектрофотометров — портативный, который предназначен для работы в полевых условиях и в различных помещениях. Портативные приборы могут быть применены для небольшого узкого круга применяемых методик измерений.

Современный рынок лабораторного оборудования большим ассортиментом спектрофотометров. Они отличаются друг от друга строением оптических систем, функциональными возможностями и, конечно, .

Выбирая такой прибор необходимо определиться с ценой и моделью, которая поможет быстро и качественно решить поставленные задачи.

Рассматривая вопрос измерения цвета, возникает сложность в выборе спектрофотометров.

Спектрофотометрия: принципы и оборудование

Рассматривая вопрос измерения цвета, мы понимаем, что цвет — психофизическое ощущение, возникающее в мозге человека под воздействием цветового стимула. Однако психофизическое ощущение измерению не поддается.

Понимая под цветовым стимулом лучистую энергию, проникающую в глаз, следует отметить, что эта энергия определяется физическими свойствами образца и источника освещения. Образец обладает свойством пропускать или отражать падающий на него свет в разных точках спектра по-разному. На этом основан принцип работы спектрофотометра. С помощью встроенного в прибор источника света образец освещается; свет, отраженный от образца либо пропущенный через него, анализируется таким образом, что определяется отношение отраженного от образца или пропущенного через образец светового потока к падающему потоку во многих точках спектра. Т. е. мы получаем на выходе спектральный коэффициент отражения или пропускания, выраженный в процентах.

Однако, кроме спектральной кривой, любой спектрофотометр может представить измеренные данные в колориметрических координатах цвета, например в XYZ или CIE L*a*b*. Координаты цвета получаются расчетным путем из спектрального коэффициента отражения (пропускания), спектрального распределения энергии источника освещения и кривых сложения стандартного наблюдателя (отражающих свойства рецепторов человеческого глаза). По этой причине для измерения цветовых координат спектрофотометром необходимо также указать источник освещения (D50, D65, A, F11 и т. д.) и угол наблюдения (2 или 10 градусов). Цветовое различие между двумя образцами традиционно определяется как расстояние между их цветовыми координатами в цветовом пространстве CIE L*a*b*.

Основные понятия и определения

Как уже упоминалось, способ измерения цвета спектрофотометром связан с разложением лучистого потока, направленного от объекта к глазу на спектральные составляющие и измерением каждого компонента в отдельности.

Спектральный коэффициент пропускания определяется отношением пропущенного лучистого потока к падающему потоку в выбранном узком спектральном интервале.

Спектральный апертурный коэффициент отражения определяется отношением лучистого потока, отраженного от объекта и отраженного от совершенного отражающего рассеивателя. (Далее в статье будет идти речь только о работе спектрофотометров на отражение.) Совершенный отражающий рассеиватель определяется как идеальный однородный рассеиватель с коэффициентом отражения, равным единице.

Белый стандарт

Реальных поверхностей со свойствами совершенного отражающего рассеивателя в природе не существует, однако, в качестве замены используются материалы, близкие по свойствам, так называемые «белые стандарты», которые с помощью специальных методов нормируются к идеальному рассеивателю. Величина спектрального коэффициента отражения белых стандартов меняется в зависимости от длины волны и заключена в пределах 0,970—0,985 в видимой части спектра. Стандарты могут изготавливаться из оксида магния, сульфата бария или других материалов, также могут использоваться керамические плитки. Основная проблема рабочих стандартов — поддержание отражающих свойств в течение длительного времени.

В современных спектрофотометрах диапазон измерения охватывает область от 360 до 750 нм с интервалом измерения 10 нм. Спектральный коэффициент отражения представляет собой плавную кривую с несколькими максимумами. В большинстве приборов отраженный от образца цвет диспергируется с помощью дифракционной решетки и измеряется с помощью кремниевой диодной линейки.

Геометрия измерения

Геометрия измерения определяет, каким образом образец освещается и наблюдается. Международной комиссией по освещению рекомендованы четыре различные геометрии:

1. 45/0. Образец освещается одним или несколькими световыми пучками, оси которых составляют угол 45±5° относительно нормали к поверхности образца. Угол между направлением наблюдения и нормалью к образцу не должен превышать 10°. Угол между осью освещающего пучка и любым его лучом не должен превышать 5°. Те же ограничения должны быть соблюдены и для наблюдаемого пучка.

2. 0/45. Образец освещается световым пучком, ось которого составляет с нормалью к образцу угол не более 10°. Образец наблюдается под углом 45±5° относительно нормали. Угол между осью освещаемого пучка и любым его лучом не должен превышать 5°. Те же ограничения должны быть соблюдены и для наблюдаемого пучка.

3. D /0. Образец освещается диффузно с помощью интегрирующей сферы. Угол между нормалью к образцу и осью пучка наблюдения не должен превышать 10°. Интегрирующая сфера может иметь любой диаметр при условии, что суммарная площадь отверстий не превышает 10 % внутренней отражающей поверхности сферы. Угол между осью наблюдаемого пучка и любым его лучом не должен превышать 5°.

4. 0/ D . Образец освещается световым пучком, ось которого составляет с нормалью к образцу угол не более 10°. Отраженный поток собирается с помощью интегрирующей сферы. Угол между осью освещаемого пучка и любым его лучом не должен превышать 5°. Интегрирующая сфера может иметь любой диаметр при условии, что суммарная площадь отверстий не превышает 10 % внутренней отражающей поверхности сферы.

Модификации основных типов спектрофотометров

На практике в настоящее время используются только две геометрии измерения — 45/0 и D/0. Остановимся на них подробнее.

Спектрофотометры с геометрией 45/0 относятся к классу недорогого портативного оборудования и успешно используются технологами для контроля цвета, измерения тестовых шкал для построения ICC профилей и выполнения других задач. Первые спектрофотометры с такой геометрией имели один источник света, потом появились приборы с двумя источниками, расположенными симметрично относительно нормали. Однако было замечено, что при освещении образцов с разных сторон измерения цвета могут иметь существенные различия. Для усреднения этих различий стали использоваться спектрофотометры с круговым освещением образца с помощью источника в виде кольца. Встречающаяся аббревиатура этой геометрии измерения — 45/0:с . При всех своих достоинствах такие приборы имеют существенные ограничения в использовании: ими нельзя измерять металлизированные материалы, которые зеркально отражают свет, попавший на них. Очевидно, что то же самое касается высокоглянцевых материалов — чем выше глянец образца, тем выше погрешность измерения.

Эти ограничения снимаются при использовании спектрофотометров с геометрией D/0, поскольку образец освещается диффузно. Тем не менее, для возможности исключения зеркальной составляющей высокоглянцевых материалов приемник света размещается под углом 8° к нормали, а напротив него симметрично относительно нормали устанавливается ловушка блеска, которая может обеспечить включение или исключение соответствующего фактора. Считается, что зеркальная составляющая коэффициента отражения возникает в результате отражения света глянцевой поверхностью.

Свет, который не попадает на образец под углом 8° (благодаря ловушке блеска), не отражается зеркально в направлении приемника, следовательно, отраженный образцом поток состоит только из диффузного света. В таком случае геометрия измерения становится D/8, а не D/0, а наличие или отсутствие зеркального компонента может обозначаться как D /8: i (ловушка закрыта, зеркальный компонент включен) и D /8: e (ловушка открыта, зеркальный компонент исключен). Интегрирующая сфера обычно покрывается сульфатом бария, хотя могут использоваться и другие материалы. Очевидно сходство материалов покрытия сферы с белыми стандартами, использующимися для калибровки спектрофотометра. Чтобы на образец не попал свет, излучаемый источником, между ним и образцом помещается небольшой экран, иначе освещение образца не будет являться диффузным. Большинство этих дорогих высококлассных приборов не относятся к числу портативных, наиболее распространенный диаметр сферы — 150 мм, хотя существуют и переносные сферические спектрофотометры со сферами диаметром 50 мм.

Двухлучевой спектрофотометр

Стабильность работы сферического спектрофотометра зависит от многих факторов. Изменение интенсивности источника освещения, дрейф электроники, старение покрытия интегрирующей сферы снижают точность работы прибора. Обойти эти проблемы позволяет двухлучевая конструкция спектрофотометра. Принцип его работы состоит в том, что одновременно измеряется свет, падающий на образец и отраженный от него. Т. е. прибор калибруется во время каждого измерения. Это позволяет добиться прекрасной стабильности в работе и согласованности нескольких приборов этого типа.

Источники света в спектрофотометрах

Принцип работы спектрофотометра подразумевает независимость измерений от типа источника света в приборе, поскольку мы измеряем отношение отраженного (пропущенного) света к падающему на образец. В настоящее время широко используются два источника света в спектрофотометрах: кварцевая галогеновая лампа и импульсная ксеноновая лампа. Современные спектрофотометры все чаще оснащаются ксеноновыми импульсными лампами. Спектральное распределение таких ламп легко отфильтровать для воспроизведения D65, в то время как галогеновые лампы производят излучение, близкое к источнику А. Это означает, что галогеновые лампы имеют недостаточное излучение в УФ-области, что не позволяет правильно оценить цвет материалов с флуоресцентными отбеливающими добавками.

Такие вещества поглощают энергию в УФ-области и излучают ее в синей области видимого спектра, что компенсирует естественную желтизну материала. Измерить цвет флуоресцирующего материала можно, освещая образец светом, имитирующим D65, имеющим достаточную УФ-составляющую излучения. Очевидно, что оценить присутствие и влияние отбеливающих добавок можно, сравнивая спектральные кривые отражения образца, освещенного ксеноновой лампой за УФ-фильтром, отсекающим УФ-излучение и без него.

Таким образом, можно сделать вывод, что при выборе спектрофотометра следует учитывать оптические свойства материалов, подлежащих измерению и, в соответствии с ними, использовать прибор с определенной геометрией излучения и источником света.

За последние 20 лет миниатюрные оптоволоконные спектрометры перестали быть чем-то необычным и превратились в рабочий инструмент большинства специалистов. Люди по достоинству оценили преимущество малых размеров в сочетании с изобилием аксессуаров для образцов.

Основной функцией спектрометра является регистрация и накопление спектра света, оцифровка полученного сигнала в зависимости от длины волны и последующий анализ с помощью ПК. На первом этапе свет, пройдя оптическое волокно, попадает в спектрометр, а именно, через узкую апертуру, известную как входная щель. Линза виньетирует свет на входе в спектрометр. В большинстве спектрометров рассеянный свет затем коллимируется с помощью вогнутого зеркала и направляется в дифракционную решетку. Решетка рассеивает компоненты спектра под слегка разными углами, которые затем фокусируются вторым вогнутым зеркалом на детекторе. В качестве альтернативы можно использовать вогнутую голографическую решетку для реализации всех трех функций спектрометра одновременно. Этот вариант имеет свои преимущества и недостатки, о которых речь пойдет далее.

Как только свет попадает на детектор, фотоны света преобразуются в электроны, которые затем через порт USB (или последовательный порт передачи данных) поступают в ПК. Программа производит интерполяцию сигнала в зависимости от количества пикселей в детекторе и линейной дисперсии дифракционной решетки для реализации калибровки, которая позволяет начертить график распределения по длинам волн в спектре. Затем эти данные можно использовать в многочисленных спектральных исследованиях, о некоторых из которых речь пойдет далее. В следующих разделах объясняется работа спектрометра и взаимодействие его компонентов. Сначала рассмотрим каждый компонент отдельно, чтобы разобраться в работе спектрометра, затем обсудим настройки и функционал. Мы также коснемся аксессуаров, которые делают применение спектрометра более эффективным.

Спектрометр. Часть 1. Щель

Общие сведения

Спектрометр представляет собой систему визуализации, распределяющую множество монохроматических изображений в плоскости детектора (через входную щель). От входной щели зависят рабочие характеристики спектрометра, поскольку она задает размер светового потока, попадающего на оптическую часть. От нее зависит спектральное разрешение, другими важными факторами также являются частота штрихов дифракционной решетки и размер пикселей детектора.

Оптическое разрешение и пропускная способность спектрометра полностью зависят от параметров щели. Свет попадает внутрь спектрометра через оптическое волокно или линзу, сфокусированную на с учетом настройки щели. От щели зависит угол расходимости попадающего внутрь света.

Щели могут иметь разную ширину - от 5мкм до 800мкм и более, высота щели составляет 1 мм (стандартно) - 2мм. Выбор размера входной щели - важный вопрос, так как она настраивается и устанавливается в спектрометре только квалифицированным специалистом.

В основном в спектрометрах применяются щели шириной 10, 25, 50, 100, 200 мкм и т.д. В системах, в которых применяются оптические волокна для подачи светового пучка, размер пакета волокон совпадает с размером входной щели. Обычно это снижает рассеяние света и повышает пропускную способность прибора.

Технические подробности

Основное назначение входной щели заключается в четком выделении объекта для размещения на оптическом столе. Размеры (ширина (Ws) и высота (Hs)) входной щели являются ключевым фактором, который влияет на пропускную способность спектрометра. От ширины изображения во входном отверстии зависит спектральное разрешение прибора, если он превышает ширину пикселя в детекторе. И пропускная способность, и разрешение спектрометра должны быть сбалансированы выбором правильной ширины входной щели.
Ширину изображения входной щели (Wi) можно рассчитать по формуле:

W i = (M 2 ? W s 2 +W o 2) 1/2 ,
Уравнение 1-1

где M представляет собой увеличение оптического стола в зависимости от соотношения фокусной длины фокусирующего зеркала и фокусной длины коллимирующего зеркала, W s - ширина входной щели и W о - увеличение изображения оптической частью. При соответствующем разрешении ширина входной щели должна быть как можно больше для увеличения пропускной способности спектрографа.

Для стандартного оптической схемы Черни-Тернера W o составляет примерно несколько десятков микрон, снижение ширины входной щели ниже указанного значения не приводит к существенному повышению разрешения спектрометра. Осевые оптические столы позволяют значительно снизить показатель W o , это обеспечивает более точное спектральное разрешение. Другим ограничивающим фактором для спектрального разрешения служит ширина пикселя (W p) детектора. Снижение показателя W i ниже W p не приводит к росту спектрального разрешения.

Часть 2. Дифракционная решетка

Общие сведения

Дифракционная решетка формирует спектр длин волн света и частично влияет на оптическое разрешение спектрометра. Правильный выбор дифракционной решетки является важным фактором для получения требуемых характеристик спектра при решении задач. От решетки зависит оптическое разрешение и эффективность распределения в спектре. Она имеет два параметра: частота штрихов решетки и угол блеска, о которых пойдет речь в данном разделе.

Применяются дифракционные решетки двух типов: нарезные и голографические решетки. Нарезные решетки состоят из большого количества параллельных штрихов, выполненных на поверхности, на которую наносится зеркальное покрытие. Голографические решетки создаются в результате интерференции двух УФ лазерных пучков (параллельных или непараллельных) на светочувствительном слое. Они отличаются стабильными спектральными характеристиками, но имеют более низкую эффективность.

Нарезные решетки - наиболее простые и недорогие материалы в производстве, но они довольно сильно рассеивают свет. Это происходит из-за неточности изготовления штрихов и частоты их нанесения. Поэтому в спектроскопии (например, УФ спектроскопии) детектор работает хуже и оптические характеристики получаются ниже. В подобном случае голографические решетки позволяют снизить эффект рассеяния света и повысить выходные характеристики спектрометра. Другим преимуществом голографической решетки является возможность простого ее создания на криволинейных поверхностях, это позволяет одновременно использовать решетку в качестве рассеивающего и фокусирующего элемента.

Частота штрихов решетки

Величина дисперсии зависит от количества штрихов, нанесенных в мм поверхности решетки. В основном этот параметр называют плотностью решетки или частотой (периодом). От частоты решетки зависит рабочий диапазон спектрометра и спектральное разрешение. Диапазон длин волн спектрометра обратно пропорционален дисперсии решетки благодаря фиксированной геометрии. Чем шире дисперсия, тем выше разрешение спектрометра. И, наоборот, более низкая частота решетки приводит к падению дисперсии и увеличению диапазона длин волн в ущерб его спектральному разрешению.

Например, спектрометр Quest™ X с частотой решетки 900 штр/мм имеет диапазон измерения длин волн, равный 370 нм, и оптическое разрешение (точность) менее 0,5 нм. Если выбран спектрометр Quest™ X с решеткой 600 штр/мм, его диапазон измерения длин волн составит 700 нм, а оптическое разрешение (точность) менее 1,0 нм. То есть с ростом диапазона волнового измерения снижается оптическая точность спектрометра.

Если требуется измерять широкий диапазон длин волн, т.е. λ max > 2λ min , оптические сигналы разных дифракционных порядков могут накладываться друг на друга на пластине детектора. Это становится очевидным, если посмотреть на уравнение для дифракционной решетки. В подобном случае для устранения нежелательного наложения сигналов, то есть для «сортировки по порядку», требуется линейный переменный фильтр (LVF).

В спектрометрах со штриховой дифракционной решеткой угловая дисперсия решетки описывается формулой:


Уравнение 2-1

где β представляет собой угол дифракции, d - период решетки (равен инверсии плотности штрихов), м - дифракционный порядок, λ - длина волны света, как показано на Рис. 2-1.


Рис. 2-1. Геометрия дифракции для плоской и вогнутой решеток

Учитывая фокусную длину (F) фокусирующего зеркала и принимая во внимание малую угловую аппроксимацию, уравнение 2-1 можно переписать как:


Уравнение 2-2

которое измеряет линейную дисперсию в нм/мм. Из линейной дисперсии максимальный спектральный диапазон (λ max - λ min) прибора можно рассчитать с учетом длины детектора (L D ), которая вычисляется умножением общего количества пикселей в детекторе (n ) на ширину одного пикселя (W p ):

Уравнение 2-3

На основании 2-3 становится очевидным, что максимальный спектральный диапазон прибора зависит от длины детектора (L D ), плотности штрихов (1/d ) и фокусного расстояния (F ).

Точность определения длины волны в дифракционной решетке определяется как:


Уравнение 2-4

где N - общее количество штрихов дифракционной решетки. Согласно теории ограниченной трансформации самая мельчайшая единица разрешения обратно пропорциональна количеству образцов. В основном, разрешение дифракционной решетки значительно выше разрешения самого спектрометра, поэтому дисперсия является лишь одним из многих факторов, определяющих спектральное разрешение прибора.

Следует отметить, что самая длинная волна, которая подвергается дифракции в решетке, составляет 2d , она представляет собой верхнее предельное значение спектрального диапазона решетки. Для ближнего ИК диапазона это ограничение максимальной длины волны может сказаться на максимальной частоте решетки, которую можно использовать в спектрометре.

Угол блеска

Поскольку дифракционная решетка преломляет полихроматический свет, она не имеет постоянную эффективность. Форма дифракционной кривой зависит в основном от угла решетки, который также известен как угол блеска. Это позволяет вычислить значение угла блеска, который соответствует максимальной эффективности - то есть так называемой цветовой длине волны. Данная концепция проиллюстрирована на Рис. 2-1, на котором сравниваются разные решетки частотой 150 штрихов/мм с углами блеска 500 нм, 1250 нм и 2000 нм.


Рис. 2-2 Сравнение эффективности решеток в зависимости от цветовой длины волны

Можно обеспечить высокую дифракционную эффективность (>85%), соответствующую определенной длине волны (цветовой). Это задается предельным значением спектрального диапазона спектрометра.

Чаще всего, цветовая длина волны дифракционной решетки смещена в зону низкой четкости спектрального диапазона с целью повышения общего соотношения сигнала к уровню шума (SNR) спектрометра.

Часть 3. Детектор

Общие сведения

Мы обсудили важность входной щели и дифракционной решетки при формировании спектрального изображения в плоскости изображения. В традиционных спектрометрах (монохроматорах) вторая щель размещена в плоскости изображения и называется выходной щелью.

Выходная щель имеет обычно аналогичные размеры, как и входная щель, а ширина последней является одним из факторов, ограничивающих спектральный диапазон прибора (как отмечено в части 1 материала). В этой конструкции детектор размещен за выходной щелью и решетка поворачивается для сканирования спектрального изображения через щель, поэтому интенсивность света является функцией длины волны.

В современных спектрометрах детекторы на линейных и ПЗС-матрицах являются следующим шагом развития спектрометров со штриховой решеткой. Поскольку случайный свет попадает на пиксели через ПЗС-матрицу, то каждый пиксель берет на себя часть спектра, который электронная система прибора может преобразовать и отобразить с помощью программного обеспечения. Это преимущество позволяет конструировать спектрометры без подвижных компонентов, что приводит к сокращению размеров и энергопотребления. Применение компактных многоэлементных детекторов - это резкое сокращение затрат, компактные размеры спектрометров, которые получили название «миниатюрные спектрометры».

Типы детекторов

Фотодетекторы можно классифицировать по разным признакам, основным из них является материал, из которого выполнен детектор. В миниатюрном спектрометре находят применение два наиболее распространенных полупроводниковых материала - Si и InGaAs. Важно выбрать правильный материал детектора при подборе спектрометра, так как ширина запрещенной энергетической зоны (E gap ) полупроводника определяет верхний предел длины волны (λ max ) согласно следующему выражению:


Уравнение 3-1

где h - постоянная Планка, c-скорость света. Постоянную Планка и скорость света можно выразить как 1240 эВ·нм или 1,24 эВ·нм для простоты перехода от энергии к длине волны. Например, ширина запрещенной зоны Si равна 1,11 эВ, что соответствует максимальной длине волны 1117,117 нм.

InGaAs, с другой стороны, представляет собой соединение InAs и GaAs, которые имеют ширину запрещенной зоны, равную 0,36 эВ и 1,43 эВ соответственно. Поэтому в зависимости от содержания In и Ga в материале данный показатель может иметь промежуточное значение. Однако, по ряду причин In и Ga нельзя смешивать в произвольном количестве, поэтому значение 1,7 мкм (или 0,73 эВ) является стандартным показателем для детекторов InGaAs. Также можно использовать матрицу InGaAs, которая способна работать с разрешением 2,2 мкм или 2,6 мкм, но подобные детекторы гораздо дороже и более шумные по сравнению с традиционными детекторами на основе InGaAs.

Нижний предел работы материала определить сложнее, так как он зависит от особенности поглощения света полупроводниковым материалом и поэтому может варьироваться в широких пределах в зависимости от толщины детектора. Другим общепринятым методом снижения предела включения детектора является флуоресцентное покрытие на окне детектора, которое будет поглощать фотоны высокой энергии и излучать фотоны более низкой энергии, определяемые датчиком. На Рис. 3-1 показано сравнение функции обнаружения детектора (D*) в зависимости от длины волны для матриц на основе Si (ПЗС) и InGaAs.


Рис. 3-1 Аппроксимация D* в зависимости от длины волны в стандартных детекторах

CCD, BT-CCD и PDA матрицы

В настоящее время детекторы InGaAs существуют только в одном исполнении, а вот многоэлементные детекторы Si имеют три типа конструкции: приборы с зарядной связью (CCD или ПЗС), ПЗС просветленного типа (BT-CCD), фотодиодные матрицы (PDA).

Технология ПЗС позволяет создавать детекторы с малыми размерами пикселей (~14 мкм), это устраняет необходимость в прямом считывании сигнала от каждого пикселя. Здесь заряд передается от одного пикселя к другому, что позволяет считывать всю информацию из матрицы с одного пикселя. Можно создать бюджетный ПЗС, который является идеальным решением для большинства миниатюрных спектрометров, но ПЗС имеют два недостатка. Во-первых, передний шлюз ПЗС может стать причиной рассеяния случайного светового потока. Во-вторых, для ПЗС требуется относительно большая подложка из P-Si, позволяющая снизить затраты на производство. Но это также ограничивает и эффективность самого детектора (прежде всего при работе в диапазоне коротких волн) за счет поглощения через слой P.

Для устранения этих двух недостатков применяется более высокая чувствительность, в этом случае BT-CCD (ПЗС просветленного типа) является идеальным решением. BT-CCD получается травлением подложки P-Si ПЗС до толщины примерно 10мкм. В результате этого значительно сокращается поглощение и увеличивается эффективность детектора. Данный процесс также позволяет подсвечивать детектор с обратной стороны (P-Si), это исключает негативное влияние переднего шлюза детектора. На Рис. 3-2 представлено сравнение эффективности традиционного ПЗС детектора и детектора BT-CCD с обратной подсветкой.


Рис. 3-2 Квантовая эффективность ПЗС детектора и детектора на просветленной ПЗС

Но помимо безоговорочных преимуществ матриц BT-CCD в спектроскопии также следует отметить два важных недостатка. Прежде всего, травление увеличивает затраты на производство и, во-вторых, (поскольку детектор получает очень тонким) может возникнуть эффект наложения в результате отражения от передней и задней поверхностей детектора. Эти явления, связанные с конструкцией BT-CCD, можно устранить путем глубокого обеднения, но это приводит к росту стоимости производства.

PDA детекторы являются более традиционными линейными приборами, которые состоят из фотодиодов, распределяемых по линии с использованием CMOS (КМОП) технологии. Эти детекторы не имеют малых пикселей и не отличаются высокой чувствительностью, но обладают рядом преимуществ перед ПЗС и BT-CCD. Во-первых, отсутствие в передаче заряда устраняет необходимость в наличии переднего шлюза детектора и значительно увеличивает скорость считывания. Вторым преимуществом детекторов PDA является глубина ячейки, которая значительно превышает показатель для ПЗС; типичный детектор PDA имеет глубину ~156,000,000e- по сравнению с ~65,000e- для стандартного ПЗС детектора. Чем больше глубина ячейки детектора PDA, тем шире динамический диапазон (~50,000:1), а также линейность сигнала. Это свойство делает детекторы PDA идеальным инструментом для применения в тех случаях, когда требуется выбирать малые заряды в крупных сигналах, например, при мониторинге СИД.

Шум в детекторе

Основной источник шума расположен в матрице детектора, речь идет о шуме при считывании, шуме при ударе, помехах при затемнении и шуме с постоянным спектром.

Шум при считывании является следствием электронного шума на выходе детектора и применяемой схематики и определяет пределы работы спектрометра.

Ударный шум связан с статистической вариацией количества фотонов, падающих на детектор, который подчиняется Пуассоновскому распределению. Поэтому ударный шум пропорционален квадратному корню фотонного потока.

Шум при затемнении обусловлен статистическими изменениями в величине электронов, которые возникают при затемнении (отсутствии падающего на детектор света). Фотодетектор выдает слабый сигнал даже при отсутствии освещения (падающего света). Этот эффект называют темновым током или сигналом при затемнении. Темновой ток обусловлен тепловым перемещением электронов и в основном зависит от средней температуры окружающего воздуха. По аналогии с ударным шумом данный вид помех также подчиняется распределению Пуассона, поэтому шум при затемнении пропорционален квадратному корню темнового тока.

Шум с постоянным спектром является результатом вариации анизотропного фотоотклика соседних пикселей. Она обусловлена вариацией квантовой эффективности пикселей, разными апертурами и толщиной пленки и увеличивается во время обработки.

Суммарный шум детектора равен сумме квадратных корней всех четырех источников шума.

TE охлаждение

Охлаждение детектора встроенным термоэлектрическим (TE) охлаждением является эффективным способом снижения шума при затемнении, а также расширения динамического диапазона и пределов обнаружения сигнала. Для детекторов на основе Si темновой ток удваивается, если температура повышается примерно на 5 - 7 °C и сокращается вполовину при снижении температуры на 5 - 7°C.

На Рис. 3-3 показан шум при затемнении для неохлаждаемого и охлаждаемого ПЗС-детектора в течение времени интегрирования, равного 60 секундам. При работе в условиях комнатных температур шум при затемнении почти полностью рассеивается неохлаждаемым детектором ПЗС. Как только ПЗС охлаждается до 10°C, темновой ток снижается примерно в четыре раза, а шум при затемнении падает в два раза. Это позволяет ПЗС работать в течение длительного времени интегрирования с целью определения слабых оптических сигналов. Если спектрометр на основе ПЗС-матрицы работает в устройствах со слабым освещением, например, для регистрации СИД, снижение уровня шума благодаря ТЕ охлаждению имеет минимальное значение вследствие относительно короткого времени интегрирования.


Рис. 3-3 Темновой ток для охлаждаемого и неохлаждаемого ПЗС детектора (время интегрирования = 60 секунд)

Как правило, если время интегрирования спектрометра ПЗС ниже 200 мс, детектор работает в состоянии ограниченной шумности. Поэтому шум в результате охлаждения TE снижается незначительно, но температурное регулирование в этих условиях будет полезным для поддержания основной линии в течение длительного периода времени.

Часть 4. Оптическая схема

Общие сведения

Как указано в части 1, спектрометр представляет собой систему получения изображений, которая распределяет множество монохроматических изображений, полученных через входную щель, на плоскость детектора. В предыдущих трех разделах мы обсудили основные компоненты спектрометра: входную щель, дифракционную решетку, детектор. В данном разделе объясняется работа всех трех компонентов совместно с разными оптическими элементами в системе. Эта система называется спектрографом. Вариантов оптических схем довольно много, наибольшее распространение получили следующие из них: кросс-корреляционная схема Черни-Тернера, развернутая модель Черни-Тернера и вогнутые спектрографы (см. рис. 4-1, 4-2 и 4-3 соответственно).


Рис. 4-1 Кросс-корреляционная схема спектрографа Черни-Тернера

Кросс-корреляционная схема состоит из двух вогнутых зеркал и одной дифракционной решетки, как показано на рис. 4-1. Фокусное расстояние зеркала 1 выбирается таким образом, что оно коллмирует пучок света из входной щели и направляет его на дифракционную решетку. После того, как свет разложен на отдельные компоненты, зеркало 2 фокусирует рассеянный свет дифракционной решеткой в плоскость детектора.

Данная модель представляет собой компактный и удобный спектрограф. Для дифракционной решетки с угловым значением дисперсии фокусное расстояние двух зеркал можно изменять для получения разных значений линейной дисперсии. Это определяет спектральный диапазон, чувствительность и разрешение системы. Оптимальная геометрия кросс-корреляционной схемы спектрографа может создавать рассеянное спектральное поле и нормальную точность измерений. Но из-за неосевой геометрии оптическая схема Черни-Тернера выдает значительное отклонение в расположении изображения, которое способно увеличить ширину изображения из входной щели на несколько десятых микрон. Оптическая схема Черни-Тернера в основном используется для спектрометров с малым и средним разрешением. Несмотря на то, что данная конструкция не предназначена для двумерного изображения, применение асферических зеркал (например, тороидальных) вместо сферических может обеспечить определенную степень коррекции сферической аберрации и астигматизма.

Для снижения аберрации изображения оптическая схема Черни-Тернера в основном спроектирован с фокальным числом (f/# ) >3, которое, в свою очередь, задает предел пропускной способности. Фокальное число оптической системы выражает диаметр входного зрачка с точки зрения эффективности фокусной длины. Оно определяется как f/# = f/D , где f представляет собой фокусную длину оптической линзы и D выражает диаметр элемента. F-номер используется для характеристики световой силы оптической системы. Математическая соотношение фокального числа и другого важного оптического показателя - цифровой апертуры (NA ) выражается следующим образом: f/# = 1/(2·NA ), где NA цифровая апертура оптической системы - безразмерная величина, которая характеризует диапазон значений углов, под которыми система может принимать или испускать свет.

Относительно высокое значение f/# Черни-Тернера по сравнению со стандартным мульти-модовым волокном (NA ≈ 0,22 ) может стать причиной весьма высокого рассеяния света. Простым и недорогим способом устранения этого нежелательного явления служит разворот оптической схемы, как показано на рис. 4-2. Это позволяет поместить «блоки пучка» в оптический канал, снижая рассеяние света. В результате этого снижается оптический шум в системе. Это решение не приводит к искажению видимого или ближнего ИК спектров, в которых сигнал имеет максимальное значение и достигается высокая квантовая эффективность, но может стать причиной искажения средних и слабых сигналов УФ-диапазона. Это делает спектрограф Черни-Тернера отличным решением для работы в УФ спектре, когда компактность является решающим фактором.


Рис. 4-2 Развернутый спектрограф Черни-Тернера

Вогнутая голографическая решетка

Третьим наиболее распространенным вариантом оптического стола служит аберрационно-исправленная вогнутая голографическая решетка (CHG). Она используется как рассеивающий и фокусирующий элемент одновременно, это приводит к снижению количества используемых оптических элементов в системе. Подобное решение повышает эффективность спектрографа, увеличивая его пропускную способность и надежность. Голографические решетки способны корректировать аберрации изображений в сферической зоне спектрометров Черни-Тернера на заданной длине волны, с ослаблением действия в широком спектральном диапазоне.


Рис. 4-3 Вогнутый голографический спектрограф

По сравнению со штриховой решеткой голографическая решетка обеспечивает более чем 10-кратное снижение рассеяния света, которое позволяет минимизировать интерференцию из-за нежелательных явлений. Штриховая дифракционная решетка создается специальной установкой, которая нарезает штрихи в покрытии подложки решетки (зачастую стекло покрыто тонким отражающим слоем) с использованием инструмента с алмазным наконечником.

Голографическая дифракционная решетка производится с помощью фотолитографической техники, в которой применяется голографическая интерференция. Штриховая дифракционная решетка в процессе производства всегда имеет какие-либо дефекты, которые включают периодически возникающие ошибки, неточности в нанесении штрихов. Все это приводит к росту рассеяния света и раздваиванию изображения (неправильные спектральные линии, вызванные периодическими ошибками). Оптическая методика используется для производства голографических дифракционных решеток и вызывает появление периодических ошибок и других неточностей. Поэтому голографические решетки значительно снижают рассеяние света (обычно в 5-10-раз ниже по сравнению со штриховыми решетками) и удаляют раздваивание.

Штриховые решетки в основном выбираются, если используется низкая частота решетки, ниже чем 1200 штр/мм. Если частота решетки высокая, то для снижения рассеяния света необходимы вогнутые решетки, в подобном случае голографические решетки являются самым оптимальным выбором. Важно помнить о том, что максимальная дифракционная эффективность голографических решеток примерно ~35% по сравнению со штриховыми решетками, эффективность которых достигает ~80%.

Часть 5. Спектральное разрешение

Общие сведения

Одной из важнейших характеристик спектрометра является спектральное (оптическое) разрешение. Спектральное разрешение системы определяет максимальное количество спектральных пиков, которые спектрометр может определить. Например, если спектрометр имеет диапазон 200 нм и спектральное разрешение 1 нм, система способна определить до 200 длин волн (пиков) в спектре.

В дисперсионных спектрометрах существует три ключевых фактора, которые определяют спектральный диапазон устройства: входная щель, дифракционная решетка, детектор. От щели зависит минимальный размер изображения, который оптический стол может сформировать в плоскости детектора. Дифракционная решетка определяет суммарный спектральный диапазон. Детектор определяет максимальное количество и размер неярких точек, которые можно оцифровать в виде спектра.

Следует помнить о том, что наблюдаемый сигнал (S o ) зависит не только от спектрального разрешения (R ) спектрометра, но и от длины волны сигнала (S r ). В результате этого наблюдаемое разрешение представляет собой искажение (измененное значение) от двух источников:

Уравнение 5-1

Если частотный диапазон сигнала значительно шире спектрального разрешения, то данный эффект можно не учитывать и считать, что измеренное разрешение соответствует разрешению сигнала. И, наоборот, если диапазон частот сигнала значительно меньше разрешения спектрометра, то наблюдаемый спектр ограничен только разрешением спектрометра.

Для решения большинства задач следует допустить, что вы работаете с одним из этих вариантов, но в определенных ситуациях, например, в рамановской спектроскопии высокого разрешения, искажение игнорировать нельзя. Например, если спектрометр имеет спектральное разрешение ~3 см -1 , лазер выдает излучение шириной ~4 см -1 , то наблюдаемый сигнал будет иметь ширину ~5 см -1 , так как спектральные разрешения близки к друг другу (распределение Гаусса).

По этой причине, при измерении спектрального разрешения спектрометра следует понимать, что измеренный сигнал значительно уже и измерение имеет ограниченное разрешение. Это обычно решается применением эмиссионной лампы низкого давления, например, с содержанием паров Hg или Ar, так как частотный диапазон таких источников обычно существенно уже, чем спектральное разрешение спектрометра с дисперсионной решеткой. Если требуется более узкое разрешение, можно использовать лазер, работающий на одном режиме.

После получения данных от лампы низкого давления спектральное разрешение измеряется на полуширине (FWHM) процента пика.

При расчете спектрального разрешения (δλ ) спектрометра следует учитывать: ширину щели (W s ), спектральный диапазон спектрометра (Δλ ), ширину пикселя (W p ) и количество пикселей детектора (n ). Важно помнить о том, что спектральное разрешение определяется как полуширина FWHM. Грубой ошибкой при расчете спектрального разрешения является заключение о том, что для определения пикового значения FWHM требуется минимальное количество пикселей, поэтому спектральное разрешение (в предположении W s = W p ) равно троекратному разрешению пикселей (Δλ/n ). Данное соотношение можно расписать для получения параметра, известного как фактор разрешения (RF ), который определяется по отношению ширины щели к ширине пикселя. Если W s ≈ W p , то фактор разрешения равен 3. Если W s ≈ 2W p , то фактор разрешения снижается до 2,5 и продолжает снижаться до тех пор, пока не будет соблюдаться соотношение W s > 4W p , в этом случае фактор разрешения достигает значения 1,5.

Все вышесказанное можно подытожить уравнением:


Уравнение 5-2

Например, если в спектрометре используется щель размером 25 мкм, 14 мкм, 2048-пиксельный детектор и спектральный диапазон составляет 350-1050 нм, то расчетное разрешение равно 1,53 нм.

Часть 6. Выбор оптического волокна

Общие сведения

При настройке спектрометра на выполнение работы важным является правильный выбор оптического волокна. Несмотря на наличие множества факторов, влияющих на данный выбор, следует обратить внимание на два ключевых параметра: диаметр волновода и поглощение света. Рассмотрим оптическое волокно и его применение в спектрометре. Затем обсудим обе характеристики, отмеченные выше, и их влияние на пропускную способность оптического волокна.

Технические характеристики

Оптическое волокно называют «световодом». Световоды напоминают собой водопроводные трубы, по которым вода перетекает из водонапорной станции в дом. Световод не освещает пространство вокруг, как лампочка в ванной комнате или кухне, поскольку в световоде наблюдается эффект полного отражения света.

Чтобы понять это, следует рассмотреть такое оптическое свойство, как преломление. Оно зависит от скорости света и материала, через который проходит свет. При перемещении света из одной оптической среды в другую среду, его скорость снижается относительно поверхности разделения сред.

Сила преломления рассчитывается как:


Уравнение 6-1

где n представляет собой коэффициент преломления, v - скорость света в среде, c - скорость света в вакууме. Например, коэффициент преломления воздуха равен 1,000293, он показывает, что скорость света в воздухе почти точно соответствует скорости света в вакууме, а коэффициент преломления в воде равен 1,333, свет перемещается в воде 25% медленнее, чем в вакууме.

Соотношение между коэффициентом преломления и углом падения света определяется по закону Снеллиуса:

Уравнение 6-2

Из данного уравнения следует, что угол преломления света (θ 2 ) зависит от соотношения коэффициентов двух материалов (n 1 /n 2 ), а также угла падения света (θ 1 ). В результате этого, меняя соотношение коэффициентов, можно добиться такого угла преломления, при котором весь падающий свет отражается от поверхности разделения сред (без выхода за пределы среды). Данное явление называется внутренним отражением и именно оно используется в световоде.

На рис. 6-1 показана конструкция волокна, которая обеспечивает полное внутреннее отражение с использованием двух типов стекол. Более низкий коэффициент применяется в оболочке, а более высокий коэффициент в световоде. Это позволяет собирать свет в одном месте и перемещать его в другое, поэтому оптические волокна являются идеальным решением для подачи света в спектрометр.


Рис. 6-1 Общее внутреннее преломление света в оптическом волокне

Поскольку весь свет проходит через световод, его диаметр влияет на светопередачу. Интуитивно понятно, что чем шире диаметр световода, тем выше чувствительность и соотношение «сигнал-уровень шума» спектрометра. Поскольку это утверждение верно до определенной степени, то имеются и другие ограничивающие факторы, которые следует рассмотреть при выборе оптического волокна.

Во-первых, необходимо обратить внимание на высоту пикселя детектора. Как показано в предыдущих разделах, оптический стол спектрометра предназначен для формирования изображения входной щели на плоскости детектора. Если пиксели детектора имеют высоту 200 мкм, можно выбрать волокно с диаметром световода 400 мкм, 50% падающего на детектор света теряется. В данном случае, нет преимуществ от применения более широкого световода, но существует способ избежать этого добавлением цилиндрической линзы в оптический стол перед детектором.


Рис. 6-2 Интенсивность сигнала в зависимости от диаметра световода и установки цилиндрической линзы

Цилиндрическая линза фокусирует изображение входной щели на оси, перпендикулярной к матрице без искажений изображений вдоль оси и параллельно матрице на плоскости детектора. Это позволяет свету через волокно падать на пиксели детектора, повышая чувствительность всей настройки. Рис. 6-2 показывает, что данный метод эффективен в отношении волокон диаметром до 600 мкм.

Поглощение света

Другим важным фактором служит поглощение света оптическим волокном. Если свет поглощается волокном, он не будет определен спектрометром.

При стандартном процессе производства оптических волокон ионы OH- случайно проникают в волоконное стекло через плазменные горелки, которые необходимы для смягчения сосуда, в этом случае его можно ввести в волокно. Присутствие данных ионов в волокне создает очень сильный эффект поглощения в диапазоне ближнего ИК, который может существенно ухудшить результаты измерения в данной области излучения. Во избежание этого при использовании волокон в спектроскопии ближнего ИК, они должны производиться с использованием специальных горелок с малым показателем ОН.


Рис. 6-3 Сравнение стандартного оптического волокна и волокна с малым содержанием ионов ОН в спектроскопии ближнего ИК

В спектре УФ присутствует довольно сильное поглощение. Это свойство связано с фотохимическим эффектом, известным как инсоляция, который ухудшает качество измерений в диапазоне УФ, особенно ниже 290 нм.

По этой причине чрезвычайно важно обратить особое внимание при выборе волокна для решения специальных задач. При работе в спектре ближнего ИК необходимо убедиться в том, что волокна имеют малое содержание ионов OH (их также называют ближнего ИК-волокнами). При работе в видимом спектре излучения и в спектре УФ применяют стандартные оптические волокна, которые называются УФ-волокнами. При работе в глубоком диапазоне УФ (< 290 нм) требуются волокна с высоким сопротивлением инсоляции, их называют SRUV-волокнами.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

им. А.М. Горького

Физический факультет

Кафедра общей и молекулярной физики

Курсовая работа

Физические принципы спектрофотометрии.

Устройство спектрофотометра

Екатеринбург

Введение

1. Литературный обзор

1.1 История развития оптической спектрометрии

1.2 Физические основы, на которых построена методика измерений

1.2.1 Закон Бугера - Ламберта - Бера

1.3 Поглощение в твердых телах и молекулах

1.3.1 Зонная теория кристаллов

1.3.2 Теория кристаллического поля

1.3.3 Теория молекулярных орбиталей

2. Абсорбциометрические приборы

2.1 Типы абсорбционных спектрометров

2.2 Типы абсорбционных спектрометров видимого и ближнего ультрафиолетового диапазона

2.2.1 Колориметры и фотоколориметры

2.2.2 Спектрофотометры

2.2.3 Двуволновые спектрофотометры

2.2.4 Спектрофотометры с фотодиодной решеткой

3. Устройство и основные узлы спектрофотометра

3.1 Устройство спектрофотометра

3.2 Основные узлы спектрофотометра

3.2.1 Источник света

3.2.2 Кюветы

3.2.3 Диспергирующий элемент

3.2.4 Монохроматоры

4. Экспериментальная часть

Заключение

Список литературы

Введение

Под оптической спектроскопией понимаются все методы количественного и качественного анализа, основанные на взаимодействии света с живой и неживой материей.

Термин свет означает электромагнитное излучение от дальней области ультрафиолетового диапазона до ближней области инфракрасного диапазона. На протяжении более чем двухсот лет оптическая спектроскопия применяется в различных областях науки, производства и медицины, в том числе в химии, биологии, физике и астрономии. Высокая специфичность оптической спектроскопии объясняется тем, что каждое вещество обладает своими спектральными свойствами, отличными от спектральных свойств других веществ. Вещества можно анализировать как в количественном, так и в качественном аспектах. В отличие от других методов спектроскопии, таких как ЯМР (ядерный магнитный резонанс), ЭПР (электронный парамагнитный резонанс), Мессбауэровской или масс-спектрометрии, для анализируемых с помощью оптической спектроскопии образцов практически нет ограничений. Измерения различных оптических параметров в зависимости от длины волны или энергии излучения ("спектр") или временных параметров ("кинетика") обеспечивают ценную информацию, которую не всегда можно получить другими аналитическими методами. Оптический спектральный анализ - это хорошо развитый метод. Однако рынок спектрофотометров все время расширяется в связи с появлением новых применений метода. В зависимости от предъявляемых требований спектрофотометры существенно различаются по размерам, форме, применимости и, в конечном счете, по стоимости. Поэтому современная тенденция заключается скорее в использовании специализированных спектрофотометров умеренной стоимости, а не громоздких, доступных для всевозможных применений "многоцелевых установок" с наилучшими характеристиками.

Цели работы:

1. изучение теоретических основ оптической спектрофотометрии

2. ознакомление с устройством и принципами работы спектрофотометра, приобретение практических навыков работы на спектрофотометре UV-1700 Shimadzu (Япония).

Исследование спектральной зависимости интенсивности сигнала Nd 3+ от его концентрации в берилловых стеклах, обогащенных Nd 3+ .

1. Литературный обзор

1.1 История развития оптической спектрометрии

Слово "спектр" в переводе с латинского означает "появление" или "схема". Исаак Ньютон в 1666 г. первым с помощью призмы расщепил солнечный свет на спектральные составляющие (рис.1). В 1758 г. Маркграф впервые, используя окраску цвета пламени, открыл способ визуального определения вещества. В 1802 г. английский физик Волдастон объяснил эксперимент Ньютона с призмой, усовершенствовал его и впервые наблюдал многочисленные темные линии в солнечном спектре. В то же время Гершель и Тальбот проводили эксперименты со светом пламени, и в 1834 г. Тальбот спектрально разделил красный цвет пламени стронция и красный цвет лития, что считается зарождением аналитической оптической спектроскопии.

Рис.1 Исаак Ньютон первым с помощью стеклянной призмы расщепил параллельный солнечный свет на его составляющие в спектр

Этот новый метод исследования, названный оптической спектроскопией, развивается с 1834г. до настоящего времени. Особое внимание следует уделить работе в этой области физики Фраунгофера, который разработал спектроскопию на дифракционных решетках и получил 1500 линий в спектре солнечного света.

спектрофотометрия спектрофотометр оптический измерение

До 20-го века не было теорий, которые могли бы удовлетворительно объяснить сложное поведение, проявляемое всеми веществами. Наиболее весомый вклад в сегодняшнее понимание спектральных проявлений внесли следующие ученые. В 1885 г. швейцарский ученый Бальмер открыл серию так называемых спектральных "линий Бальмера" в спектре водорода. В 1897 г. английский ученый Томпсон открыл электрон, а в 1911 г. его соотечественник Эрнест Резерфорд открыл атомное ядро. В 1900 г. Макс Планк сформулировал первые законы квантовой теории. Вернер Гейзенберг (1932 г.) и Эрвин Шредингер (1933 г.) получили Нобелевскую премию за пионерские работы по квантовой механике. В дальнейшем концепцию квантовой механики развивали Поль Дирак и Вольфганг Паули (1945 г.), которые также получили Нобелевскую премию.

Так как история развития науки переплетена с историей развития методов измерений и анализа, то история оптической спектроскопии в большей степени отражена историей астрономии и, следовательно, историей атомной спектроскопии. Только в конце 19-го века молекулярная спектроскопия становится мощным аналитическим методом. Например, с помощью спектрофотометра, способного обнаруживать характерные "полосы" гемоглобина, можно различить кровь и красители красного цвета, так что сегодня криминалисты могут найти убийцу по маленькой капле крови.

На протяжении многих десятилетий в спектроскопии использовались обычные вольфрамовые лампы накаливания, призмы, дифракционные решетки и детекторы света, которые ограничивали результаты узким диапазоном видимой области между 500 и 700 нм.

До 40-х годов 20-го века было доступно всего несколько типов коммерческих спектрофотометров (спектрофотометр "Дженерал Электрик", спектрофотелометр Кенко, модель DM Колеман), к тому же на них было трудно работать, и они производились в ограниченном количестве. В то время "измерение" поглощения для определения концентрации производилось визуально последовательным сравнением двух полей, подобно тому, как это делается сейчас для проверки цветного видения аномалоскопом Нагеля. Знаменитый фотометр Pulfrich Цейса (было изготовлено несколько тысяч в Германии) нудно и долго работал таким способом с помощью так называемых S-фильтров в видимом диапазоне (интерференционные фильтры с полушириной полосы пропускания 15-20 нм). За 1941 г. было опубликовано более 800 статей по определению концентрации клинически важных компонентов крови и других жидкостей организма с использованием подобных спектрофотометров.

Рынок спектрального аналитического оборудования стал быстро развиваться и совершенствоваться только после второй мировой войны. Вследствие лучшего разрешения и меньшего количества рассеянного света вместо призм стали использоваться дифракционные решетки и двойные монохроматоры с автоматическим сканированием, дающие исправленные спектры, что способствовало их использованию в рутинной аналитической работе. Существенное снижение рассеянного света привело к совершенствованию детектирующих возможностей спектрофотометров на 4-5 порядков величины.

Вскоре на рынке появились специализированные фотометры, например для радиометрии, колориметрии или двуволнового анализа. В период значительного снижения цен на компьютеры с конца 70-х годов спектрометры стали изготавливать на базе микрокомпьютеров. Это не только облегчило измерения, но и позволило проводить анализ в непрерывном режиме.

1.2 Физические основы, на которых построена методика измерений

1.2.1 Закон Бугера - Ламберта - Бера

Задачей абсорбционной спектрометрии является определение того, в какой степени образец пропускает свет определенной длины волны λ. В этом контексте "свет" определяется как энергия спектрального излучения Ф е (λ) (Вт нм -1) или как плотность потока излучения на единицу поверхности (Е м -2 с -1). Для упрощения и без применения специфических единиц измерения света обозначим интенсивность падающего света в точке x = 0 как I 0 , а интенсивность в точке x - как I . Бугер в 1729 г. и Ламберт в 1760 г. установили, что ослабление света, проходящего через прозрачную среду, пропорционально интенсивности света I и толщине исследуемого образца dx (закон Бугера - Ламберта):

Введя коэффициент поглощения (экстинкции) α (λ ), получим:

(1)

Закон Бугера - Ламберта применим только при особых условиях, которые не всегда выполняются, в особенности при исследовании биологических образцов, таких как белки или различные суспензии. Условия, при которых выполняется закон Бугера - Ламберта:

· падающий свет должен быть монохроматическим и коллимированным (параллельным);

· исследуемые молекулы должны быть диспергированы до молекулярного, т.е. гомогенного уровня, они не должны рассеивать свет и взаимодействовать друг с другом;

· рассеяние и отражение от поверхности образца подобно поглощению также уменьшают интенсивность света, поэтому они также должны быть исключены.

В дополнение к этому в 1852 г. Бер обнаружил, что для большинства растворов поглощающих молекул коэффициент пропорциональности α (λ ) в уравнении (1) сам пропорционален концентрации с определяемой молекулы. Объединив открытие Бера с законом Бугера - Ламберта, получим закон Бугера - Ламберта - Бера (обычно сокращаемого до закона Ламберта - Бера):

Интегрирование уравнения (2) по всей толщине x образца дает

(3)

где постоянная интегрирования I 0 - интенсивность падающего на образец света, а I - интенсивность света в любом положении x внутри образца, т.е. с увеличением толщины образца интенсивность света уменьшается экспоненциально. В логарифмической форме уравнение (3) будет иметь вид:


С учетом так называемого коэффициента молярной экстинкции:

где Μ -1 = л/моль, получаем:

(4)

где , определяемое произведением , называется оптической плотностью или поглощательной способностью (поглощением) образца Α (λ ).

Таким образом, поглощение А пропорционально концентрации исследуемого образца. Этот вывод позволяет производить быстрое оптическое измерение концентрации.

1.3 Поглощение в твердых телах и молекулах

Основные теории твердого тела, применяемые при интерпретации оптических спектров поглощения:

Зонная теория кристаллов

Теория кристаллического поля

Теория молекулярных орбиталей

1.3.1 Зонная теория кристаллов

Зонная теория кристаллов - синтез положений об общих физических свойствах твердого тела. В основу данной теории положены представления о взаимодействии энергетических уровней электронов, происходящем в процессе образования кристалла при соединении атомов в кристаллическую постройку.

Среди твердых тел можно выделить определенные классы веществ, существование которых легко объяснить исходя из особенностей их зонной структуры:

перекрывание зон, образуемых s -, p - и d -электронными уровнями слагающих атомов;

валентная зона не полностью заполнена электронами (содержит незанятые энергетические уровни);

Оптические свойства металлов:

Непрозрачны для электромагнитных волн от самых низких частот до середины ультрафиолетовой области спектра

Хорошо отражают излучение

Неметаллические вещества (диэлектрики и полупроводники):

наличие в зонном спектре запрещенного интервала энергий между полностью заполненной валентной зоной и свободной от электронов зоной проводимости

индуцируемые светом электронные переходы имеют место либо между различными зонами, либо в пределах одной и той же энергетической полосы.

Для соединений с промежуточным (ионно-ковалентным) или ковалентным характером химической связи ширина запрещенной зоны является важнейшим параметром, обусловливающим характер оптического поглощения в видимой области спектра (окраску соединений), т.к. энергия, необходимая для перевода части электронов из валентной зоны в зону проводимости, сопоставима с энергией квантов видимого света и инфракрасного излучения.

1.3.2 Теория кристаллического поля

Сущность теории - предположение, что комплекс можно рассматривать как систему, состоящую из центрального атома (или иона) и возмущенного электростатического поля атомов (ионов) окружения, именуемых лигандами. Детали электронной структуры учитываются только для центрального иона, а сами лиганды рассматриваются лишь как неизменные источники электростатического поля (точечные заряды).

Главный вывод - это расщепление термов центрального атома в поле лигандов. В ионах переходных элементов, лантанидах и актинидах d - и f -электроны практически не экранированы от лигандов, вследствие чего электрический потенциал кристаллического поля может искажать энергетический спектр d - или f -орбит: их термы расщепляются на ряд дискретных уровней энергии. Определение характера этого расщепления является центральной задачей теории кристаллического поля.

Слабое кристаллическое поле - спектры оптического поглощения ионов практически не зависят (если не учитывать тонких деталей спектров) от кристаллохимических параметров соединений.

Для ионов группы железа (случай среднего кристаллического поля) кристаллическое поле слабее кулоновского, но значительно сильнее спин-орбитального взаимодействия: величина расщепления термов достигает 10000-20000 см - 1 .

Случай сильного кристаллического поля, приводящего к изменению электронной конфигурации ионов, реализуется для ионов с 4d - и 5d -электронами, а также для редко наблюдаемых в минералах низкоспиновых состояний ионов группы железа. В оптических спектрах природных минералов этот случай практически не встречается.

Расстояние между подуровнями расщепления, обозначаемое Δ или 10Dq , является основным параметром кристаллического поля, характеризующим влияние лигандов на термы центрального атома. Сила кристаллического поля обратно пропорциональна расстоянию (центральный ион - лиганды) приблизительно в пятой степени, т.е. уменьшение этого расстояния увеличивает силу кристаллического поля.

Искажения координационных полиэдров влекут за собой понижение локальной симметрии кристаллического поля и, как следствие, дополнительное расщепление энергетических уровней центрального иона.

Кроме того, положение энергетических уровней иона в кристаллическом поле зависит от параметров Рака В и С, учитывающих электростатическое взаимодействие электронов и отражающих состояние химической связи.


1.3.3 Теория молекулярных орбиталей

Основная идея метода МО - молекулярные орбитали образуются путем составления соответствующих линейных комбинаций атомных орбиталей центрального иона и координирующих его лигандов. По теории МО предполагается, что структурной единицей для записи волновой функции является весь комплексный ион АВ n , в котором 3d -, 4s - и 4p -орбитали центрального атома металла А в различной степени гибридизированы с р -орбитами лигандов В.

Для решения вопроса о возможности эффективной комбинации центрального иона и лигандов необходимо выполнение следующих условий:

) орбитали А и В должны обладать одинаковыми свойствами симметрии;

) орбитали центрального атома и лигандов должны по возможности полнее перекрываться (гибридизироваться);

) энергии орбиталей А и В должны быть равными.

Каждая пара атомных орбиталей образует две молекулярные орбитали - связывающую и антисвязывающую, - порождающие два энергетических уровня: нижний (связывающая орбиталь), обычно полностью заполненный электронами, и верхний (несвязывающая орбиталь) пустой или, в зависимости от электронной конфигурации центрального иона, частично заполненный d -электронами.

В общем же случае все возможные типы сочетаний пар s -, p - и d -орбиталей сводятся всего к двум типам молекулярных σ - и π-орбиталей, каждая из которых может быть связывающей (σ св, π св) или антисвязывающей (σ * , π *).

При анализе спектроскопических свойств комплексов, энергетические диаграммы которых построены с помощью МО, существенное значение имеет характер симметрии молекулярных σ - и π-орбиталей (четность - нечетность), определяющий правила отбора оптических переходов.

Правило Лапорта - переходы между состояниями одинаковой четности являются запрещенными, разрешены переходы между состояниями четное - нечетное.

Переход с переносом заряда - электрон под действием излучения переходит с орбитали, почти полностью сконцентрированной у одного атома, на орбиталь, которая полностью принадлежит другому атому.

Соответствующая полоса в спектре поглощения называется полосой или спектром переноса заряда.

Типы переноса заряда:

Переходы электронов с σ-орбитали на незанятые t 2 g - и e g - opбитали. Перенос заряда от лиганда к металлу (сокращенно лиганд → металл, или L→М).

Переходы электронов с заполненной π-орбитали, принадлежащей в основном лиганду, на e * g - , a * 1 g - или t 1 u -орбитали. При этом заряд также переносится от лиганда к металлу.

Особый тип переноса заряда характеризует соединения, в которых ионы металла имеют различные валентности.

Тип переноса заряда, обусловленный электронным взаимодействием между ионами различных металлов. В спектрах некоторых соединений обнаружены полосы поглощения, связанные с переходами между электронными уровнями пар Ni-Mn, Сu-Mn, Fe-Ti и др.

2. Абсорбциометрические приборы

Основное назначение современных абсорбциометрических приборов - определение концентрации образца с исследуемым веществом посредством сравнения величин поглощения или пропускания световой энергии исследуемого образца и образца известной концентрации.

В настоящее время на рынке фотометрических приборов и в практических лабораториях можно встретить большое разнообразие различных по конструкции и характеристикам колориметров, фотометров и спектрофотометров.

Приборы могут отличаться:

· по форме представления информации (в единицах светопропускания, в единицах оптической плотности, в единицах концентрации или любых других значениях, по которым произведена калибровка);

· по способу построения и хранения калибровочных значений (автоматическое, ручное, длительное или краткосрочное);

· по способу подачи в прибор исследуемого раствора (проточная кювета, коммутируемая кювета, кюветы специальной конструкции, например, 96-луночный планшет и т.д.);

· по конструкции оптической системы (одноканальные и многоканальные);

· по виду источника излучения световой энергии (разнообразные лампы накаливания с телом накала из вольфрама, импульсные, газоразрядные лампы, светодиоды, лазеры).

Существуют и другие отличительные признаки, так или иначе влияющие на параметры и эксплуатационные характеристики приборов.


2.1 Типы абсорбционных спектрометров

При измерении поглощения вещества определяется его поглощающая способность на определенной длине волны λ 1 . Настроив монохроматор на эту длину волны, мы определяем разницу между значениями, полученными в присутствии и отсутствие исследуемого образца (на таком принципе основаны колориметры, фотоколориметры и большинство фотометров):

Аналогично можно отсканировать весь спектральный диапазон Δλ между λ 1 и λ 2 , в присутствии и отсутствие образца (двулучевые спектрофотометры имеют два параллельных луча, один из которых проходит через сравнительную кювету, а второй - через кювету с образцом) и получить с помощью встроенного компьютера скорректированный спектр поглощения (с помощью вычислений на компьютере в режиме реального времени) (см. рис.2, а)

До недавних пор логарифмирование данных измерений спектрометров осуществляли с помощью логарифмирующего усилителя, т.е. аппаратно. Теперь, с целью снижения стоимости оборудования, процесс логарифмирования выполняется с помощью программного обеспечения спектрофотометра, исходный сигнал в котором сохраняется в линеаризированном виде. Однако это порождает некоторые трудности.

1) Прежде чем рассчитать логарифм, необходимо с высокой точностью определить нулевую линию (т.е. "истинный нулевой сигнал"), что особенно важно при измерении небольших значений поглощения, незначительные отклонения могут вызвать существенные изменения величины поглощения и формы спектра.

2) Последующее логарифмирование линеаризированных данных, хранящихся в памяти, приводит к логарифмическому фотометрическому разрешению.

) Измерение спектров поглощения быстросканирующими спектрофотометрами с одновременным логарифмированием линейного сигнала требует высоких скоростей преобразования, которые достижимы только с использованием быстродействующих микропроцессоров.

Рис.2. Типы сканирующих абсорбционных спектрофотометров. (согласно Науману и Шредеру, 1987)

С точки зрения схемной реализации - усиление сигнала переменного тока производить проще, чем усиление сигнала постоянного тока. Поэтому сигнал постоянного тока, получаемый на фотодетекторе спектрометра, перед усилением преобразуют в сигнал переменного тока механическим прерывателем (см. рис.2, б).

В отличие от последовательных измерений, измерение образца и сравнения можно проводить одновременно, предварительно расщепив луч света (расщепителем луча Y) и используя два отдельных фотодетектора D 1 и D 2 , после чего два независимых сигнала преобразуются в спектр поглощения (рис.2, в). Такой метод позволяет исключить ошибки измерения, вызванные флуктуациями источника света, но не компенсирует различия в чувствительности детекторов.

В сканирующем абсорбционном спектрометре, приведенном на рис.2, г, применяется только один детектор. Измеряющий свет расщепляется на два луча (расщепителем луча Y), затем после прохождения образца, сравнения и прерывателя они соединяются обратным расщепителем луча Y. Затем с помощью фазочувствительного усилителя, который воспринимает сигнал сравнения с прерывателя, получают исправленный спектр поглощения. Такая конструкция сканирующего абсорбционного спектрометра применяется наиболее часто. Однако у него есть несколько недостатков. Вследствие ограниченной частоты прерывателя (60 Гц) и в соответствии с теоремой отбора, скорость сканирования длины волны не может быть выше 30 с на спектр в диапазоне от 400 до 800 нм. Иначе фотометрические ошибки и ошибки определения длины волны достигнут неприемлемо высоких значений. Обычно механическое расстояние между образцом/сравнением и фотодетектором D более 20 см. Таким образом, допустимый телесный угол света, излучаемого образцом, составляет 0,001. Это исключает, однако, возможность измерения мутных рассеивающих образцов наподобие присутствующих in vivo биологических и застеклованных при низких температурах.

Для того чтобы собрать как можно больше квантов света, конструкция спектрометра должна предусмотреть как можно больший телесный угол сбора света от образца (до 2π). Площадь катода отдельного фотоумножителя, как правило, бывает неоднородной с точки зрения эффективности. Поэтому, если два луча двулучевого спектрофотометра падают на слегка различающиеся площадки одного и того же фотокатода, то, даже в случае оптимальной юстировки, коррекция нулевой линии оказывается недостаточной, и это выражается в существенном отклонении от идеальной горизонтальной линии. В практически всех спектрометрах такого типа применяется оптическая последовательная корректировка, которая занимает много времени. В соответствии с правилом Гаусса, касающимся ошибки распространения луча, ошибки лучей образца и сравнения аддитивно влияют на конечный результат. На рис.3 представлена конструкция типичного двулучевого спектрофотометра ("Kontron Instruments GmbH"). Если вновь ввести второй детектор согласно рис.2, д и компенсировать различие усиления обоими детекторами вторым световым источником переменного тока частотой f H , мы снимем ограничения в скорости сканирования. Образец, сравнение и детекторы размещаются очень близко друг к другу, что позволяет проводить измерения рассеивающих мутных образцов. Если требования к оптическим свойствам и разрешению по длине волны (порядка Δλ = ±0,5 нм) не очень высоки, что обычно бывает в химической и биологической молекулярной спектроскопии, то идеальным представляется использование конструкции Сейя - Намиока на основе голографической вогнутой решетки рис.4. Доступно быстрое спектральное сканирование мутных и сильно рассеивающих (in vivo) образцов, компактный дизайн, низкий уровень рассеянного света, большой динамический диапазон измерения и, что наиболее важно, встроенный компьютер, производящий все типы спектральных измерений. Такие спектрометры отличаются небольшими размерами, низкой стоимостью и высокой надежностью. Для каждого исследуемого образца не требуется последующее сканирование сравнительного образца. Сравнительный спектр, снятый раз и навсегда, сохраняется в виде коррекционной кривой в памяти компьютера, и спектр исследуемого образца автоматически корректируется в процессе сканирования без вмешательства человека.

Рис.3. компоненты типичного двулучевого спектрофотометра ("Kontron Instruments GmbH")

Рис.4. Схема небольшого, но мощного монохроматора Сейя - Намиока на основе голографической вогнутой решетки.


2.2 Типы абсорбционных спектрометров видимого и ближнего ультрафиолетового диапазона

2.2.1 Колориметры и фотоколориметры

Фотоколориметры - приборы, предназначенные для определения количества окрашенного вещества путем измерения величин поглощения и пропускания в видимой части электромагнитного спектра.

Рис.5 Упрощенная схема фотоколориметра: 1 - источник световой энергии (лампа накаливания, импульсная лампа); 2 - полосовой светофильтр, пропускающий световой поток в полосе длин волн Δλ.; 3 - контейнер для исследуемых образцов (кювета); 4 - детектор (фотоприемник); Ф 0 - падающий поток световой энергии; Ф - поток световой энергии, прошедший раствор, который поглотил часть энергии; Δλ. - полоса пропускания светофильтра использования.

Рис 6. Обобщенная структурная схема одноканального колориметра: 1 - источник световой энергии; 2 - диафрагма; 3 - оптическая система; 4 - полосовой фильтр; 5 - оптическая система; 6 - кювета; 7 - фотоприемник; 8 - аналого-цифровой преобразователь; 9 - микро-ЭВМ; 10 - индикатор; 11 - пульт оператора; 12 - интерфейс связи с внешней ЭВМ и регистрирующим устройством.

2.2.2 Спектрофотометры

Основное отличие спектрофотометра от фотоколориметра состоит в возможности пропустить через исследуемый образец световой поток любой требуемой длины волны, проводить фотометрические измерения, сканируя (просматривая) весь диапазон длин волн не только видимого (VIS) света - от 380 до 750 нм, но и ближнего ультрафиолета (UV) - от 200 до 380 нм.

Последнее обстоятельство не исключает целесообразности выпуска недорогих спектрофотометров, не имеющих источника ультрафиолетового излучения и работающих только в видимой части оптического диапазона волн.

Целью упомянутого и очень важного режима работы спектрофотометров - режима сканирования - является построение спектральной кривой поглощения (абсорбции) и нахождение на ней пиков, а также исследование процессов интерференции и поиск ложных пиков, приводящих к ошибочным результатам при спектрофотометрических исследованиях.

Рис 7 - монохроматор (источник монохроматического излучения световой энергии на длине волны λ); 2 - кювета с исследуемым раствором; 3 - детектор (фотоприемник); Ф 0 - падающий поток световой энергии; Ф - поток световой энергии, прошедший через раствор, поглощающий часть энергии

2.2.3 Двуволновые спектрофотометры

В начале 50-х годов прошлого века Брайтон Чанс предложил новый метод измерения очень маленьких изменений поглощения сильно рассеивающих и мутных образцов. Основная идея очень проста. В то время как в двулучевой спектроскопии, где две кюветы, с образцом и сравнением, облучаются светом одной, но переменной длины волны , в двуволновой абсорбционной спектрофотометрии используется только одна кювета с образцом, которая облучается двумя различными длинами волн, и измеряется разница поглощений между 1 и 2 т.е. .

Схема стандартного двуволнового спектрофотометра приведена на рис.8. Разрешение по длине волны здесь, в отличие от светосилы, имеет второстепенное значение. Поэтому в качестве "монохроматора" двуволнового спектрофотометра вполне подойдут узкополосные интерференционные фильтры. Они обладают большей светосилой, чем решеточные монохроматоры. Два луча света с длинами волн 1 и 2 посредством колеблющегося с частотой от 30 до 100 Гц зеркала попеременно облучают образец. Соответствующие сигналы I ( 1 ) и I ( 2 ) поступают на вход фазочувствительного усилителя, выходной сигнал которого после определенного преобразования подается для обработки на компьютер.

Рис.8. Схема типичного двуволнового спектрофотометра.

Два ортогональных луча, излучаемые одной лампой, разделяются, коллимируются и диспергируются интерференционными фильтрами с длинами волн пропускания 1 и 2 . Далее лучи света фокусируются на маленькое колеблющееся зеркало (типичная частота колебания составляет 120 Гц). Генерированная последовательность световых импульсов длин волн 1 , 2 , 1 , 2 , … в большей степени поглощается оптически плотным образцом, а малая интенсивность прошедшего света детектируется фотоумножителем. Выходной сигнал фотоумножителя преобразуется синхронным усилителем и подается на компьютер для обработки. Использование полупрозрачного зеркала и соответствующего блокирующего фильтра между образцом и детектором, чрезвычайно малого светового излучателя (актиничной лампы с интерфильтром 3) позволяет распознавать чрезвычайно низкие изменения поглощения (А < 0,0001) при большом оптическом фоне (Е " 4). Кювета с образцом находится в специальном термостатированном держателе, гарантирующем постоянную температуру измерений.

2.2.4 Спектрофотометры с фотодиодной решеткой

Особым типом спектрофотометров являются приборы с фотодиодной решеткой или матрицей (PDA). Здесь свет от источника направляется непосредственно на образец и уже после этого - на дифракционную решетку, которая проецирует разложенный по поддиапазонам свет на фотодиодную решетку или матрицу. Последние содержат определенное количество фотодиодных датчиков, преобразующих световую энергию в электрические импульсы. Поэтому любой диапазон длин волн при подобной конструкции спектрофотометра дает свой "отклик" практически мгновенно, а не последовательно, как это имеет место в традиционной спектрофотометрии. Электрические импульсы с фотодиодов обычно обрабатываются микрокомпьютером с выводом результатов на дисплей. В зависимости от используемого для работы диапазона волн используются дейтериевая и/или вольфрамовая лампы.

Количество фотодиодов определяет разрешающую способность спектрофотометрического прибора. Применение фотодиодной решетки является важным элементом проведения кинетических исследований, что позволяет одновременно производить замеры исследуемого субстрата и образующегося в ходе реакции продукта при различных длинах волн. Использование данной схемы обеспечивает высокое быстродействие при работе спектрофотометра в режиме сканирования: менее одной секунды на диапазон сканирования.

3. Устройство и основные узлы спектрофотометра

3.1 Устройство спектрофотометра

Рис 9: 1 - источник световой энергии (видимая область); 2 - поворотный отражатель; 3 - источник световой энергии (ультрафиолетовая область); 4 - оптическая система, направляющая поток энергии на входную щель; 5 - входная щель; 6 - оптическая система, формирующая параллельный поток световой энергии; 7 - диспергирующий элемент (призма или дифракционная решетка); 8 - оптическая система, направляющая поток энергии на выходную щель; 9 - выходная щель; 10 - оптическая система, формирующая поток энергии, проходящий через кювету; 11 - кювета; 12 - фотоприемник; 13 - аналого-цифровой преобразователь; 14 - микро-ЭВМ; 15 - индикатор; 16 - пульт оператора; 17 - интерфейс связи с внешней ЭВМ и регистрирующим устройством

Поворотный отражатель (2) направляет поток световой энергии от одного из источников (1 или 3), через оптическую систему (4) на входную щель (5) монохроматора. С выхода монохроматора через щель (9) поступает монохроматический поток световой энергии с определенной длиной волны λ. Установка необходимой длины волны чаще всего осуществляется путем изменения угла падения полихроматического потока световой энергии по отношению к плоскости диспергирующего элемента (7). Оптическая система (10) формирует световой поток таким образом, чтобы при минимально допустимом объеме исследуемого раствора и многократной установке кюветы (11) в кюветное отделение геометрия потока не изменилась.

Полихроматический свет от источника проходит через монохроматор, который разлагает белый свет на цветовые компоненты. Монохроматическое излучение с дискретным интервалом в несколько нанометров проходит через ту часть прибора, где располагается образец с исследуемой пробой.

3.2 Основные узлы спектрофотометра

3.2.1 Источник света

Спектрофотометр UV/VIS (ультрафиолет + видимый свет) имеет два источника света: для видимого участка спектра и источник ультрафиолета - от 200 до 390 нм.

Источником видимого света служит вольфрамовая, как правило, галогенная лампа, дающая постоянный поток света в диапазоне 380 - 950 нм, являясь стабильным и долговечным источником световой энергии со средним сроком службы более 500 ч.

В качестве источника УФ используются водородные или дейтериевые лампы. Ультрафиолетовые лампы, содержащие дейтерий, имеют высокую интенсивность излучаемого потока и непрерывный спектр в диапазоне от 200 до 360 нм.

3.2.2 Кюветы

Как известно исследуемый образец помещается в специальные приставки. Для каждого вида образцов они разные. Для твердых - это специальные зажимы, а при спектральных измерениях жидких образцов используются специальные контейнеры из кварцевого стекла, так называемые кюветы.

В большинстве спектрофотометров применяются стандартные кюветы, которые предназначены для такого размещения, которое предусматривает горизонтальную траекторию луча света. Основным недостатком подобных кювет является то, что только небольшая часть образца (около 10%) освещается измеряющим светом. В случае большой ценности образца или доступности его в небольшом объеме, можно использовать микрокюветы или ультрамикрокюветы с объемом 50 или даже 2,5 мкл. Кюветы очень маленьких объемов проявляют капиллярные свойства, и возникают проблемы с образованием пузырьков воздуха, что требует дегазации. Наконец, из таких кювет сложно извлечь обратно образец. Стандартные кюветы имеют внешние размеры: 12,512,545 мм, а внутренние - 1010 мм. Кюветы с меньшим внутренним объемом, выпускаемые одним производителем имеют тот же внешний размер, что и стандартные, но внутренний, например 101,25 мм.

3.2.3 Диспергирующий элемент

В спектрофотометрах в качестве диспергирующего элемента чаще всего используют призмы и дифракционные решетки.

Дифракционная решетка технологически более сложное изделие, чем призма. Большинство применяемых в настоящее время решеток изготовлены способом выжигания и голографического копирования и представляют собой пластины с большим числом параллельных штрихов - до нескольких сот на миллиметр.

Основным преимуществом использования призмы в спектрофотометре является ее низкая стоимость.

Преимущество дифракционных решеток состоит в том, что они обеспечивают линейную дисперсию света на всем диапазоне видимого и УФ спектров. Отрицательным моментом применения дифракционных решеток является их высокая стоимость в сравнении с призмами и светофильтрами.

Одной из самых важных характеристик монохроматоров является полоса пропускания, выражаемая в единицах длин волн - нанометрах.

Если интерференционные фильтры дают ширину пропускания в диапазоне 6-20 нм, то призмы и дифракционные решетки дают более узкую полосу - менее 5 нм, а следовательно, и большую "чистоту" (монохромность) света, падающего на кювету с образцом. Полоса пропускания является одной из важнейших характеристик спектрофотометра. Уменьшение полосы пропускания влечет за собой повышение разрешающей способности спектрофотометра - значимой характеристики качества спектрофотометрических приборов.

3.2.4 Монохроматоры

Действие спектральных приборов - спектрофотометров - основано на том, что в некоторых физических системах условия прохождения света оказываются различными. Такие системы называются диспергирующими. Обычно в качестве диспергирующего элемента используют призму или дифракционную решетку. Устройства, позволяющие разделить полихроматический свет на монохроматический спектр излучения, называются монохроматорами (рис.10).

Рис. 10. Функциональная схема монохроматора с призмой.

Входная щель; 2-объектив, формирующий параллельный поток световой энергии; 3-призма; 4 - объектив, направляющий поток энергии на экран; 5 - экран; 6 - выходная щель

Щель (1), на которую падает полихроматический поток световой энергии, находится в фокальной плоскости линзы (2). Эта часть прибора называется коллиматором. Выходящий из объектива (2) параллельный поток световой энергии падает на призму (3). Вследствие дисперсии (обусловленной зависимостью показателя преломления от длины волны) свет различных длин волн выходит из призмы под разными углами. Если в фокальной плоскости линзы объектива (4) поставить экран (5), то линза сфокусирует параллельные потоки энергии для различных длин волн в разных местах экрана. Поворачивая призму (3), можно просканировать через щель (6) монохроматические потоки энергии во всем спектре излучения. Часто в качестве диспергирующего элемента используется дифракционная решетка, которая представляет собой стеклянную или металлическую пластину, на которой нанесены параллельные одинаковые штрихи, расположенные на строго одинаковых расстояниях друг от друга. На рис.11 показана дифракционная решетка, состоящая из чередующихся параллельных друг другу щелей одинаковой ширины b , расположенных на одинаковом расстоянии a друг от друга. Сумма (a + b ) является периодом этой структуры и называется постоянной решетки d.

Рис.11. Функциональная схема монохроматора с дифракционной решеткой.

Входная щель; 2 - объектив, формирующий параллельный поток световой энергии; 3 - дифракционная решетка; 4 - объектив, направляющий поток энергии на экран; 5 - экран; 6 - выходная щель

Через входную щель (1) полихроматический поток световой энергии линзой объектива (2) трансформируется в параллельный поток, который проходит через щели дифракционной решетки (3). В каждой точке на экране (5), расположенном в фокальной плоскости линзы объектива (4), соберутся те лучи, которые до линзы были параллельными между собой и распространялись под определенным углом Q к направлению падающей волны. Поэтому освещенность в точке Р на экране (5) определяется результатом интерференции вторичных волн, распространяющихся как от разных участков одной щели, так и от разных щелей. Существует направление, распространяясь по которому, вторичные волны от всех щелей будут приходить в точку Р в одной фазе и усиливать друг друга, и другое - когда волны не совпадают по фазе и ослабляют друг друга. Таким образом, на экране наблюдается чередование светлых и темных полос. Условие формирования максимумов от дифракционной решетки, то есть когда волны усиливают друг друга при интерференции, наблюдается тогда, когда разность хода равна целому числу волн. Зависимость формирования максимумов различных длин волн от угла Q дифракционной решетки выражается формулой: d*sinQ = k - 1, где k = 0, 1, 2.

Если на решетку падает свет разных длин волн, то максимумы для различных длин волн располагаются под различными углами Q к первоначальному направлению распространения света. Поэтому дифракционная решетка разлагает полихроматический свет в дифракционный спектр и употребляется как диспергирующий прибор.

4. Экспериментальная часть

Были отсняты спектры берилловых стекол обогащенных Nd 3+ , причем все шесть образцов имеют разные концентрации ионов Nd 3+ . Измерения проводились на спектрофотометре UV-1700 Shimadzu. На рис.12. приведены спектры, заметно что с ростом номера образца растут и интенсивность пиков, следовательно чем больше номер образца, тем больше концентрация Nd 3+ в образце.

Рис.12. Спектры берилловых стекол обогащенных Nd 3+

Провели исследование спектральной зависимости интенсивности сигнала Nd 3+ от его концентрации в данных образцах. Сравнили самый заметный пик (550-600 нм) с двумя пиками (730-780 нм) и (780-830 нм). Вычислили отношение значений интенсивностей данных пиков и для каждого образца и построим график зависимости полученных значений от концентрации образца (рис 13).


Теоретически два данных графика должны быть идентичны, как видно из рис.13. наша практическая часть этого не подтверждает, т.е. графики имеют некоторые различия. Это можно объяснить тем, что образцы перед использованием, конечно, были отполированы на алмазной пасте, но внутри они все равно остались неоднородными. Еще причиной является приставка в которой закреплялись образцы, она тоже дает некоторую погрешность.

Заключение

В данной работе были изучены физические принципы, лежащие в основе работы спектрофотометра, его внутреннее устройство и основные узлы. Важно подчеркнуть, что основные принципы действия спектрофотометра, отдельные оптико-механические схемы, блоки и узлы находят свое применение в различных специализированных приборах и автоматических анализаторах для различных исследований.

Была проделана небольшая экспериментальная работа на спектрофотометре UV-1700 Shimadzu (Япония). В ходе которой были отсняты спектры шести образцов берилловых стекол с разной концентрацией ионов Nd 3+ . Проведено исследование спектральной зависимости интенсивности сигнала Nd 3+ от его концентрации в данных образцах. Выявлены причины расхождения теоретических и практических данных (неоднородность образцов и приставка).

Список литературы

1. В. Шмидт "Оптическая спектроскопия для химиков и биологов", Изд.: Техносфера, М., 2007.

Платонов А.Н. "Природа окраски минералов", Изд.: Наукова думка, Киев, 1976.

Свободная Интернет энциклопедия "Википедия", http://wikipedia.org/

В этой поговорим о принципах работы спектрофотометров; о том, где их применяют и как выбрать спектрофотометр, если он вам нужен.

Принцип работы спектрофотометров

Методы спектрометрии основаны на измерении степени поглощения (отражения) монохроматического светового потока - в этом случае влияние посторонних факторов сведено к минимуму, увеличивается чувствительность и точность приборов.

Различают две основные конструкции спектрофотометров: однолучевые и двухлучевые. В двухлучевом спектрофотометре один луч падает на исследуемый образец, а второй - на эталон. В однолучевом приборе измерения проводятся с помощью коэффициентов коррекции. Двухлучевые спектрофотометры более точные, позволяют добиться высокой степени повторяемости результатов, они менее чувствительны к изменению параметров окружающей среды.

Применение спектрофотометров

Спектрофотометры применяются, в основном, для:
- определения концентрации веществ в медицине, биологических исследованиях, в аналитической химии, фармацевтике;
- измерения в растворах оптической плотности и скорости ее изменения;
- распознавания веществ, для определения чистоты веществ (наличия примесей);
- изучения химического строения и состава веществ, химических реактивов , различных образцов;
- оценки цвета в полиграфии, в промышленности (лакокрасочной, текстильной, химической, пищевой, косметической и т. п.);
- спектрального анализа в научных исследованиях, в астрономии, физике, биологии.

Как выбрать спектрофотометр

Выбирая спектрофотометр, нужно заранее определить для себя основные параметры, необходимые для решения стоящих задач. Все приборы можно разделить на две большие группы:
- портативные;
- стационарные.

Портативные обладают небольшим весом и компактными размерами, их можно брать с собой на выезд, они подходят для оперативных измерений на производстве. Стационарные приборы предназначены для установки в лабораториях, они позволяют производить более точные и сложные измерения. Подобные спектрофотометры могут иметь интерфейс для подсоединения к компьютеру, для архивирования, распечатки, обработки данных.

Из технических параметров, существенных для химического анализа*, следует учесть:
- спектральный диапазон;
- точность выбора длины волны;
- характеристику повторяемости результатов (величина, указывающая близость серии результатов изучения одного и того же образца по одной и той же методике, одним лаборантом, на одном приборе, в одной лаборатории);
- функциональность прибора, возможность проведения тех или иных измерений, получения результатов в удобном виде;
- стоимость (зависит от функциональности и величины воспроизводимости результатов);
- габариты и вес, если речь идет о мобильном устройстве;
- габариты отделения для образцов, если речь идет о стационарном устройстве; оно должно подходить для ваших образцов.

Дополнительно можно принять во внимание наличие в штатной комплектации различных аксессуаров, например, например, кювет и чашек Петри.

Обращаем ваше внимание, что в магазине «ПраймКемикалсГрупп» вы можете купить спектрофотометр КФК-3-01-«ЗОМЗ» - функциональное оборудование по доступной цене. Также в продаже чашки Петри , другая лабораторная посуда и техника. Имеется доставка.
s______________
* Для цветометрических измерений существенными являются другие параметры спектрофотометра.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!