Модемные протоколы физического уровня. Модемные протоколы физического уровня Функции канального уровня

Локальные вычислительные сети строились с использованием нескольких типов протоколов физического уровня, отличающихся типом среды передачи, частотным диапазоном сигналов, уровнями сигналов, способами кодировки.

Первыми технологиями построения ЛВС, получившими коммерческое признание, были патентованные решения ARCNET (Attached Resource Computer NETwork ) и Token ring (маркерное кольцо), однако в начале 90-х годов прошлого века они постепенно были практически повсеместно вытеснены сетями на базе семейства протоколов Ethernet .

Этот протокол был разработан Исследовательским центром в Пало Альто (PARC) корпорации Xerox в 1973-м году. В 1980 компании Digital Equipment Corporation, Intel Corporation и Xerox Corporation совместно разработали и приняли спецификацию Ethernet (Version 2.0). Тогда же в институте IEEE (Institute of Electrical and Electronics Engineers) был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802.x, которые содержат рекомендации по проектированию нижних уровней локальных сетей. В это семейство входят несколько групп стандартов:

802.1 - объединение сетей.

802.2 - Управление логической связью.

802.3 - ЛВС с множественным доступом, контролем несущей и обнаружением коллизий (Ethernet).

802.4 - ЛВС топологии «шина» с передачей маркера.

802.5 - ЛВС топологии «кольцо» с передачей маркера.

802.6 - сеть масштаба города (Metropolitan Area Network, MAN).

802.7 - Консультативный совет по широковещательной технологии (Broadcast Technical Advisory Group).

802.8 -- Консультативный совет по оптоволоконной технологии (Fiber-Optic Technical Advisory Group).

802.9 - Интегрированные сети с передачей речи и данных (Integrated Voice/Data Networks).

802.10 - Безопасность сетей.

802.11 - Беспроводная сеть.

802.12 - ЛВС с доступом по приоритету запроса (Demand Priority Access LAN,

lOObaseVG-AnyLan).

802.13 – номер не был использован!!!

802.14 – Передача данных по сетям кабельного TV (не активна с 2000 г.)

802.15 - Беспроводные персональные сети (WPAN) например Bluetooth, ZigBee, 6loWPAN

802.16 - Беспроводные сети WiMAX (W orldwide I nteroperability for M icrowave A cce s s , по-русски читается вайма́кс )

802.17 называется RPR (Resilient Packet Ring - адаптивное кольцо для пакетов). Разрабатывается с 2000 года в качестве современной магистральной сети городского масштаба.

По каждой группе работает свой подкомитет, который разрабатывает и принимает обновления. Стандарты серии IEEE 802 охватывают два уровня модели OSI, нас пока интересуют только те из них и в той части, которые описывают физический уровень.

Ethernet (802 .3) - ЛВС с множественным доступом, контролем несущей и обнаружением коллизий.

На сегодняшний день Ethernet является наиболее распространенными протоколами локальных вычислительных сетей. Причем спецификация IEEE 802.3 на сегодняшний день описывает несколько вариантов физической реализации ЛВС с разными средами передачи и скоростями передачи данных.

Базовым свойством, объединяющим все эти спецификации является метод управления доступом к среде передачи данных. Для Ethernet это множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection). В сети Ethernet все узлы равноправны, нет какого либо централизованного управления их активностью или разграничения полномочий (как, например в Token ring). Каждый узел непрерывно прослушивает среду передачи и анализирует содержимое всех пакетов данных, если пакет предназначен не данному узлу, он ему не интересен и на верхние уровни не передается. Проблемы обычно возникают при передаче, поскольку никто не гарантирует, что два узла не попытаются вести передачу одновременно (в результате в кабеле возникнет невоспринимаемая суперпозиция двух сигналов). Для предотвращения таких ситуаций (коллизий ) каждый узел прежде чем начать передачу убеждается в отсутствии в кабеле сигналов от других сетевых устройств (контроль несущей ). Но этого не достаточно для предотвращения коллизий из-за ограниченности скорости распространения сигнала в среде передачи. Возможна ситуация, что какой-то другой узел уже начел передачу, просто сигнал от него еще не достиг рассматриваемого нами устройства. Т.е в сети Ethernet возможны и являются штатными ситуации когда два или более узла одновременно пытаются передавать данные мешая друг другу. Процедура разрешения такой коллизии заключается в том, что обнаружив в процессе передачи присутствие в кабеле чужого сигнала, все попавшие в такую ситуацию узлы прекращают передачу и предпринимают попытки возобновить её через различные интервалы времени.

Недостаток вероятностного метода доступа - неопределенное время прохождения кадра, резко возрастающее при увеличении нагрузки на сеть, что ограничивает его применение в системах реального времени.

Рассмотрим подробнее процедуру обнаружения коллизии и взаимозависимость допустимых размеров сети от скорости передачи данных и длины информационных пакетов, передаваемых по сети. Содержимое и внутреннее устройство кадров Ethernet мы будем разбирать на канальном уровне. Пока мы просто будем учитывать, что при скорости распространения сигнала в проводнике около 200 000 000 м/с при работе сетевого адаптера Ethernet IEEE 802.3 со скоростью передачи данных 10 Мбит/с на отправку одного байта уходит 0,8 мкс и он представляет из себя волновой пакет длиной около 150 м.

Теперь еще раз вернёмся к рисунку. Чтобы рабочая станция «А» узнала, что в процессе передачи имела место коллизия, суперпозиция «столкнувшихся» сигналов должна достичь её до того, как будет завершена передача. Это накладывает ограничения на возможную минимальную длину отправляемых пакетов. Действительно, если использовать пакеты короче чем длина кабеля между рабочими станциями «А» и «В», возможна ситуация, когда пакет полностью отправлен первой станцией (и она уже решила, что передача прошла успешно), а он еще даже не дошел до второй, и она имеет полное право начинать передавать свои данные в любой момент времени. Нетрудно убедиться, что избежать подобных недоразумений можно только используя пакеты такой длины, что за время их передачи сигнал успевает добежать до самой удаленной станции и вернуться обратно.

При скорости передачи данных в 10 Мбит/с эта проблема не играла существенной роли и минимальная длина кадра была ограничена размером 64 байта. За время их передачи первые биты успевают пробежать около 10 км, и для сетей с максимальной длиной сегмента в 500 м. все необходимые условия оказываются выполненными.

При переходе к 100 Мбит/с длина минимального кадра сократиться в 10 раз. Это существенно ужесточает параметры работы сети и максимальное расстояние между станциями было сокращено до 100 м.

При скорости 1000 Мбит/с 64 байта передаются всего за 0,512 мкс и поэтому в гигабитных сетях пришлось увеличить минимальную длину кадра в 8 раз до 512 байт. Если данных для наполнения кадра не хватает, сетевой адаптер просто дополняет его специальной последовательностью символов до этой длины. Этот приём называется «расширением носителя».

Решая проблему обнаружения коллизий, расширение носителя впустую расходует полосу пропускания канала передачи данных при передаче маленьких пакетов. Чтобы уменьшить влияние этого фактора в гигабитном Ethernet адаптеру разрешено при наличии нескольких готовых к передаче коротких кадров формировать из них определённым образом один общий кадр «нормальной» длины до 1518 байт.

Более того, было предложено допустить использование кадров большей длины, чем в предыдущих стандартах Ethernet. Это предложение было реализовано в виде так называемых “jumbo” - кадров длиной до 9018 или даже более байт.

IEEE 802.3 определяет несколько различных стандартов физического уровня. Каждый из стандартов протокола физического уровня IEEE 802.3 имеет наименование.

Характеристики

Скорость, Mbps

Макс. длина сегмента, м

Среда передачи

50-Ом коаксиал (толстый)

ВОК 1270 нм

ВОК, 830, 1270 нм

Топология

Тип передачи

полудуплекс

Из таблицы видно, что исходная топология общая шина (толстый Ethernet, тонкий Ethernet) достаточно быстро была заменена на звезду.

TokenRing (IEEE 802.5)

Сеть Token Ring была представлена фирмой IBM в 1984 г., как часть предложенного ею способа объединить в сеть весь ряд выпускаемых IBM компьютеров и компьютерных систем. В 1985 комитет IEEE 802 на основе этой технологии принял стандарт IEEE 802.5. Принципиальное отличие от Ethernet - детерминированный мет од доступа к среде в предопределенном порядке. Реализован доступ с передачей маркера (применяемый также в сетях ARCnet, и FDDI).

Кольцевая топология означает упорядоченную передачу информации от одной станции к другой в одном направлении, строго по порядку включения. Кольцевая логическая топология реализуется на основе физиче­ской звезды, в центре которой находится много станционное устройство доступа устройство (MSAU - Multi-Station Access Unit).

В любой момент време­ни передачу данных может вести только одна станция, захватившая маркер до ступа (token). При передаче данных в заголовке маркера делается отметка о занятости, и маркер превращается в обрамление начала кадра. Остальные станции побитно транслируют кадр от предыдущей (upstream) станции к последующей (downstream). Станция, которой адресован текущий кадр, сохраняет его копию в своем буфере для последующей обработки и транслирует его далее по кольцу, сделав отметку о получении. Таким образом кадр по кольцу достигает передаю­щей станции, которая удаляет его из кольца (не транслирует дальше). Когда станция заканчивает передачу, она помечает маркер как свободный и передает его дальше по кольцу. Время, в течение которого станция имеет право пользоваться маркером, регламентировано. Захват маркера осуществляется на основе приоритетов, назначаемых станциям.

С ростом активности узлов полоса пропускания, достающаяся каждому из узлов, сужается, но обвальной деградации производительности (как в Ethernet) не происходит. Кроме того, механизм приоритетов и ограничения на время владения маркером позволяют привилегированным узлам выделять га­рантированную полосу пропускания независимо от общей загрузки сети. Количество узлов в одном кольце не должно превышать 260 (сегмент Ethernet теорети­чески допускает 1024 узла). Скорость передачи 16 Мбит/с, размер кадра может достигать 18,2 Кбайт.

Предельное время передачи пакета в Token-Ring 10 мс. При максимальном количестве абонентов 260 полный цикл работы кольца составит 260 x 10 мс = 2,6 с. За это время все 260 абонентов смогут передать свои пакеты (если, конечно, им есть чего передавать). За это же время свободный маркер обязательно дойдет до каждого абонента. Этот же интервал является верхним пределом времени доступа Token-Ring

Протоколы физического уровня

Протоколы локальных сетей.

ARCNET () и Token ring Ethernet .

802.1 - объединение сетей.

802.10 - Безопасность сетей.

802.11 - Беспроводная сеть.

lOObaseVG-AnyLan).

, по-русски читается вайма́кс )

Ethernet (802.3)

метод управления доступом коллизий контроль несущей различные интервалы времени.

Характеристики Ethernet IEEE 802.3i IEEE 802.3j IEEE 802.3u IEEE 802.3ab IEEE 802.3z IEEE 802.3an
10BaseT 10BASE-F 100BaseTX 1000BaseT 1000Base-SX,LX 10GBaseLH
Скорость, Mbps
Макс. длина сегмента, м
Среда передачи 50-Ом коаксиал (толстый) TP cat 3 - 5 ВОК 1270 нм TP cat 5 TP cat 5e ВОК, 830, 1270 нм TP cat 7
Топология Шина Звезда Звезда Звезда Звезда Звезда Звезда
Тип передачи полудуплекс дуплекс дуплекс дуплекс дуплекс дуплекс дуплекс

TokenRing (IEEE 802.5)

- детерминированный мет

маркер доступа

С ростом активности узлов полоса пропускания, достающаяся каждому из узлов, сужается, но обвальной деградации производительности (как в Ethernet) не происходит. Кроме того, механизм приоритетов и ограничения на время владения маркером позволяют привилегированным узлам выделять га­рантированную полосу пропускания независимо от общей загрузки сети. Количество узлов в одном кольце не должно превышать 260 (сегмент Ethernet теорети­чески допускает 1024 узла). Скорость передачи 16 Мбит/с, размер кадра может достигать 18,2 Кбайт.

Предельное время передачи пакета в Token-Ring 10 мс. При максимальном количестве абонентов 260 полный цикл работы кольца составит 260 x 10 мс = 2,6 с. За это время все 260 абонентов смогут передать свои пакеты (если, конечно, им есть чего передавать). За это же время свободный маркер обязательно дойдет до каждого абонента. Этот же интервал является верхним пределом времени доступа Token-Ring

Весь диапазон передаваемых частот разделен на три части. "Голосовые" частоты (от 0 до 4 кГц) остаются незадействованными в передаче данных. Они остаются исключительно для телефонных разговоров. Следующая часть, частоты от 25 до 160 кГц, используются для передачи данных от пользователя к провайдеру. Диапазон от 240 кГц до 1,5 МГц несёт информацию в обратную сторону. Именно это и есть отличие ADSL от простой DSL. Дело в том, что от провайдера к пользователю поступает гораздо больше информации, чем в обратную сторону. Это и используется в ADSL для увеличения скорости связи


Система ADSL использует 256 частотных каналов для потока в одну сторону (downstream) и 32 канала для передачи в другую сторону (upstream) данных. Эти каналы в полосе частот расположены непосредственно рядом друг с другом, ширина полосы каждого составляет соответственно 4,3125 КГц. Влияние шума на линии связи зависит, как правило, от частоты, поэтому он влияет только на часть спектра. Благодаря тому, что ADSL разделяет канал на множество индивидуальных интервалов по 4 КГц и использует каждый из них в полном объеме, данная технология эффективно оперирует всем доступным диапазоном частот.

Уровни сигналов данных

Уровни управляющих сигналов

Для подключения обычно используются разъёмы с 9-ю или 25-ти контактами типа D. Они обозначаются DB-9, DB-25:


Контакты разъемов

DB25 Розетка (мама)
Контакт Обозн. Направление Описание
SHIELD --- Shield Ground - защитная земля, соединяется с корпусом устройства и экраном кабеля
TXD --> Transmit Data - Выход передатчика
RXD <-- Receive Data - Вход приемника
RTS --> Request to Send - выход запроса передачи данных
CTS <-- Clear to Send - вход разрешения терминалу передавать данные
DSR <-- Data Set Ready - вход сигнала готовности от аппаратуры передачи данных
GND --- System Ground - сигнальная (схемная) земля
CD <-- Carrier Detect - вход сигнала обнаружения несущей удаленного модема
9-19 N/C - -
DTR --> Data Terminal Ready - выход сигнала готовности терминала к обмену данными
N/C - -
RI <-- Ring Indicator - вход индикатора вызова (звонка)
23-25 N/C - -
DB9 Розетка (мама)
Контакт Обозн. Направление Описание
CD <-- Carrier Detect
RXD <-- Receive Data
TXD --> Transmit Data
DTR --> Data Terminal Ready
GND --- System Ground
DSR <-- Data Set Ready
RTS --> Request to Send
CTS <-- Clear to Send
RI <-- Ring Indicator

Иногда применяется разъем типа RJ-45. Использование его контактов не стандартизовано, один из используемых вариантов приведен ниже.

RJ-45
Контакт Обозн. Направление Описание
RI <-- Ring Indicator
CD <-- Carrier Detect
DTR --> Data Terminal Ready
GND --- System Ground
RxD <-- Receive Data
TxD --> Transmit Data
CTS <-- Clear to Send
RTS --> Request to Send

Используется несколько типов кабелей. Для соединения DTE-DCE используются кабели прямого соединения, контакты соединяются один к одному. Для соединения DTE - DTE используют кросс-кабели нескольких типов называемые «нуль-модемными».

Протокол V.35

Потребность в увеличении скорости обмена в соединениях DTE-DCE привели к распространению разработанного в протоколе V.35 высокоскоростного интерфейса. Первоначально стандарт V.35 был разработан для подключения группы модемов к коммуникационному устройству. Группа модемов работает в конфигурации, обратной мультиплексору, т.е. мультиплексор объединяет несколько 19,2-кбит/с модемных линий, образуя из них одну быструю линию. Подобная конфигурация обеспечивала передачу данных со скоростями цифровых линий там, где имелись только обычные телефонные линии. Коммерческого успеха эта идея не имела, но определение интерфейса пришлось по душе изготовителям оборудования, которые приняли его в качестве высокоскоростной замены старинного интерфейса RS-232.

В спецификации не был определен стандарт электрического разъема, но фирма IBM начала выпускать совместимые с V.35 большие прямоугольные разъемы М/34 с огромными прижимными винтами. Получилось очень надежное соединение: М/34 разъемы невозможно соединить неправильно, а большие прижимные винты гарантировали, что вилку соединителя нельзя было так просто выдернуть.

Интерфейс имеет низкий уровень логических единицы и нуля и дифференциальные линии передачи данных. Напряжение передатчика +0.35 В для линии B и -0.2 В для линии A. Спецификация определяет максимальную длину кабеля в завистмости скорости передачи. При скорости 100 Кбит/с длина кабеля от 600 до 1200 м. Для скорости 10 мбит/с длина кабеля 90 м.

Прямоугольный четырехрядный 34 –х контактный разъём М/34 имеет следующее обозначение выводов:

M/34 Male M/34 Female

Протокол HSSI

Дальнейший прогресс в скорости доступных линий связи потребовал использования ещё более скоростных интерфейсов для подключений DTE – DCE.

Компаниями Cisco Systems и T3Plus Networking для удовлетворения новых потребностей был разработан высокоскоростной последовательный интерфейс (High-Speed Serial Interface - HSSI) HSSI определяет как электрический, так и и физический интерфейсы. Он является открытым и используется многими другими производителями оборудования.

Технические характеристики HSSI обобщены в таблице:

Максимальная скорость передачи сигнала HSSI равна 52 Mb/сек. На этой скорости HSSI может оперировать скоростями Т3 (45 Mb/сек) большинства современных быстродействующих технологий WAN, а также может обеспечить высокоскоростное соединение между локальными сетями.

Данный протокол весьма интеллектуален. Так, он делает возможным выделение пользователю ограниченной полосы пропускания. Также он имеет встроенные механизмы контроля линии на участках: кабель между DTE и DCE, DTE – выходной порт DCE, DTE – порт DCE на дальнем конце линии WAN и проверку функционирования порта DTE по запросу DCE.

HSSI использует субминиатюрный, 50-контактный соединитель, размеры которого меньше, чем у его аналога V.35

Протокол G.703

Протокол (а точнее серия протоколов) G.703 был разработан в 1972 году сектором стандартизации электросвязи международного союза электросвязи (International Telecommunication Union, ITU ). Необходимость в нем была продиктована потребностями магистральных телефонных операторов, активно строивших линии связи передачи оцифрованного голосового трафика для замены магистральных каналов с частотным уплотнением. Протокол базируется на стандартах G.702, G.704 и I.430 и обслуживает цифровые сети иерархией PDH и SDH.

G.703 может работать на скоростях передачи данных 64, 1544, 6312, 32064 и 44736 Кбит/с (PDH, американская версия), 2048, 8448, 34368, 139264 Кбит/с (европейская версия). Предусматривается работа и при 155,52 Мбит/с. В качестве физического канала передачи может использоваться витая пара (две пары, Z=100-120 Ом) или коаксиальный кабель (два кабеля, 75 Ом). Амплитуда импульсов 1-3В.

Для передачи сигналов в каждом направлении используется отдельная пара. По ней передаётся информационный сигнал и тактовый синхронизирующий сигнал. Предусматривает 3 вида взаимодействия терминального оборудования: однонаправленный, разнонаправленный,и с центральным тактовым генератором:

Частота синхронизирующих сигналов может быть меньше скорости передачи данных в 2, 4 и 8 раз.

Для каждой скорости обмена данными предусматриваются собственные спецификации физических параметров сигнала и разные типы кодирования. Для проводных каналов на основе витой пары имеем:

Используемое здесь биполярное кодирование с альтернативной инверсией (Alternate Mark Inversion, AMI) это сигнал с тремя состояниями, использующий нулевое напряжение для передачи бита “0” и альтернативные напряжения для передачи бита “1”

Данное кодирование обеспечивает хорошее поддержание синхронизации при передаче последовательностей единиц но хуже ведет себя при передаче непрерывных последовательностей нулей. Для устранения этого недостатка используется его модификация B8ZS или Binary-8 Zero Substitution в которой каждые последовательные восемь бит «0» заменяются последовательностью с нарушением чередования полярностей

Для высоких скоростей передачи используются биполярное кодирование с высокой плотностью (High density bipolar code of order 3 - HDB3). Представление битов в методе HDB3 лишь незначительно отличается от представления, используемого алгоритмом AMI. При наличии в потоке данных 4 последовательных битов 0 последовательность изменяется на 000V, где полярность бита V такая же, как для предшествующего ненулевого.

При максимальных скоростях передачи в G.703 специфицировано кодирование с инверсией кодовых маркеров (coded mark inversion - CMI). Используется инверсия полярности для каждой логической 1 (единице ставится в соответствие 11 или 00), а для каждого логического нуля вводится смена полярности в середине интервала.

основных разновидностей интерфейса G.703 приведены в таблице.

USB 1.0 Спецификация выпущена в ноябре 1995 года. Предусмотрены два режима передачи данных: режим с высокой пропускной способностью (Full-Speed ) - 12 Мбит/с и режим с низкой пропускной способностью (Low-Speed ) - 1,5 Мбит/с При этом общая древовидная топология с активными разветвителями может объединять до 127 устройств. Обеспечивается питание подключенных устройств напряжением 5 В с максимальным потребляемым током 500 мА.

В процессе принятия спецификация USB 3.0 В этой версии стандарта максимальная скорость передачи данных поднята еще на порядок до 4,8 Гбит/с и увеличен максимальный допустимый ток в шине питания до 900 мА.

IEEE 1394

Разработка стандарта IEEE 1394 (известного также как FireWire или i-Link) началась в 1986 году. Задачей разработчиков было создание универсального внешнего интерфейса, пригодного как для работы с мультимедиа, так и с накопителями данных, принтеров, сканеров и тому подобного. В результате 12 декабря 1995 года появился 10 мегабайтный документ под названием 1394-1995.pdf, который описывал первую версию стандарта.

· Последовательная шина вместо параллельного интерфейса позволила использовать кабеля малого диаметра и разъёмы малого размера.

· Поддержка горячего подключения и отключения всего чего угодно.

· Питание внешних устройств через IEEE 1394 кабель.

· Высокая скорость

· Возможность строить сети из различных устройств и самой различной конфигурации.

· Простота конфигурации и широта возможностей. Через IEEE 1394 может работать самое различное оборудование, причём пользователю не придётся мучаться вопросом, как это всё правильно подключить.

Роль Appl в развитии стандарта.

Протоколы физического уровня

Протоколы локальных сетей.

Локальные вычислительные сети строились с использованием нескольких типов протоколов физического уровня, отличающихся типом среды передачи, частотным диапазоном сигналов, уровнями сигналов, способами кодировки.

Первыми технологиями построения ЛВС, получившими коммерческое признание, были патентованные решения ARCNET (Attached Resource Computer NETwork ) и Token ring (маркерное кольцо), однако в начале 90-х годов прошлого века они постепенно были практически повсеместно вытеснены сетями на базе семейства протоколов Ethernet .

Этот протокол был разработан Исследовательским центром в Пало Альто (PARC) корпорации Xerox в 1973-м году. В 1980 компании Digital Equipment Corporation, Intel Corporation и Xerox Corporation совместно разработали и приняли спецификацию Ethernet (Version 2.0). Тогда же в институте IEEE (Institute of Electrical and Electronics Engineers) был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802.x, которые содержат рекомендации по проектированию нижних уровней локальных сетей. В это семейство входят несколько групп стандартов:

802.1 - объединение сетей.

802.2 - Управление логической связью.

802.3 - ЛВС с множественным доступом, контролем несущей и обнаружением коллизий (Ethernet).

802.4 - ЛВС топологии «шина» с передачей маркера.

802.5 - ЛВС топологии «кольцо» с передачей маркера.

802.6 - сеть масштаба города (Metropolitan Area Network, MAN).

802.7 - Консультативный совет по широковещательной технологии (Broadcast Technical Advisory Group).

802.8 -- Консультативный совет по оптоволоконной технологии (Fiber-Optic Technical Advisory Group).

802.9 - Интегрированные сети с передачей речи и данных (Integrated Voice/Data Networks).

802.10 - Безопасность сетей.

802.11 - Беспроводная сеть.

802.12 - ЛВС с доступом по приоритету запроса (Demand Priority Access LAN,

lOObaseVG-AnyLan).

802.13 – номер не был использован!!!

802.14 – Передача данных по сетям кабельного TV (не активна с 2000 г.)

802.15 - Беспроводные персональные сети (WPAN) например Bluetooth, ZigBee, 6loWPAN

802.16 - Беспроводные сети WiMAX (Worldwide Interoperability for Microwave Access , по-русски читается вайма́кс )

802.17 называется RPR (Resilient Packet Ring - адаптивное кольцо для пакетов). Разрабатывается с 2000 года в качестве современной магистральной сети городского масштаба.

По каждой группе работает свой подкомитет, который разрабатывает и принимает обновления. Стандарты серии IEEE 802 охватывают два уровня модели OSI, нас пока интересуют только те из них и в той части, которые описывают физический уровень.

Ethernet (802.3) - ЛВС с множественным доступом, контролем несущей и обнаружением коллизий.

На сегодняшний день Ethernet является наиболее распространенными протоколами локальных вычислительных сетей. Причем спецификация IEEE 802.3 на сегодняшний день описывает несколько вариантов физической реализации ЛВС с разными средами передачи и скоростями передачи данных.

Базовым свойством, объединяющим все эти спецификации является метод управления доступом к среде передачи данных. Для Ethernet это множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection). В сети Ethernet все узлы равноправны, нет какого либо централизованного управления их активностью или разграничения полномочий (как, например в Token ring). Каждый узел непрерывно прослушивает среду передачи и анализирует содержимое всех пакетов данных, если пакет предназначен не данному узлу, он ему не интересен и на верхние уровни не передается. Проблемы обычно возникают при передаче, поскольку никто не гарантирует, что два узла не попытаются вести передачу одновременно (в результате в кабеле возникнет невоспринимаемая суперпозиция двух сигналов). Для предотвращения таких ситуаций (коллизий ) каждый узел прежде чем начать передачу убеждается в отсутствии в кабеле сигналов от других сетевых устройств (контроль несущей ). Но этого не достаточно для предотвращения коллизий из-за ограниченности скорости распространения сигнала в среде передачи. Возможна ситуация, что какой-то другой узел уже начел передачу, просто сигнал от него еще не достиг рассматриваемого нами устройства. Т.е в сети Ethernet возможны и являются штатными ситуации когда два или более узла одновременно пытаются передавать данные мешая друг другу. Процедура разрешения такой коллизии заключается в том, что обнаружив в процессе передачи присутствие в кабеле чужого сигнала, все попавшие в такую ситуацию узлы прекращают передачу и предпринимают попытки возобновить её через различные интервалы времени.

Недостаток вероятностного метода доступа - неопределенное время прохождения кадра, резко возрастающее при увеличении нагрузки на сеть, что ограничивает его применение в системах реального времени.

Рассмотрим подробнее процедуру обнаружения коллизии и взаимозависимость допустимых размеров сети от скорости передачи данных и длины информационных пакетов, передаваемых по сети. Содержимое и внутреннее устройство кадров Ethernet мы будем разбирать на канальном уровне. Пока мы просто будем учитывать, что при скорости распространения сигнала в проводнике около 200 000 000 м/с при работе сетевого адаптера Ethernet IEEE 802.3 со скоростью передачи данных 10 Мбит/с на отправку одного байта уходит 0,8 мкс и он представляет из себя волновой пакет длиной около 150 м.

Теперь еще раз вернёмся к рисунку. Чтобы рабочая станция «А» узнала, что в процессе передачи имела место коллизия, суперпозиция «столкнувшихся» сигналов должна достичь её до того, как будет завершена передача. Это накладывает ограничения на возможную минимальную длину отправляемых пакетов. Действительно, если использовать пакеты короче чем длина кабеля между рабочими станциями «А» и «В», возможна ситуация, когда пакет полностью отправлен первой станцией (и она уже решила, что передача прошла успешно), а он еще даже не дошел до второй, и она имеет полное право начинать передавать свои данные в любой момент времени. Нетрудно убедиться, что избежать подобных недоразумений можно только используя пакеты такой длины, что за время их передачи сигнал успевает добежать до самой удаленной станции и вернуться обратно.

При скорости передачи данных в 10 Мбит/с эта проблема не играла существенной роли и минимальная длина кадра была ограничена размером 64 байта. За время их передачи первые биты успевают пробежать около 10 км, и для сетей с максимальной длиной сегмента в 500 м. все необходимые условия оказываются выполненными.

При переходе к 100 Мбит/с длина минимального кадра сократиться в 10 раз. Это существенно ужесточает параметры работы сети и максимальное расстояние между станциями было сокращено до 100 м.

При скорости 1000 Мбит/с 64 байта передаются всего за 0,512 мкс и поэтому в гигабитных сетях пришлось увеличить минимальную длину кадра в 8 раз до 512 байт. Если данных для наполнения кадра не хватает, сетевой адаптер просто дополняет его специальной последовательностью символов до этой длины. Этот приём называется «расширением носителя».

Решая проблему обнаружения коллизий, расширение носителя впустую расходует полосу пропускания канала передачи данных при передаче маленьких пакетов. Чтобы уменьшить влияние этого фактора в гигабитном Ethernet адаптеру разрешено при наличии нескольких готовых к передаче коротких кадров формировать из них определённым образом один общий кадр «нормальной» длины до 1518 байт.

Более того, было предложено допустить использование кадров большей длины, чем в предыдущих стандартах Ethernet. Это предложение было реализовано в виде так называемых “jumbo” - кадров длиной до 9018 или даже более байт.

IEEE 802.3 определяет несколько различных стандартов физического уровня. Каждый из стандартов протокола физического уровня IEEE 802.3 имеет наименование.

Характеристики Ethernet IEEE 802.3i IEEE 802.3j IEEE 802.3u IEEE 802.3ab IEEE 802.3z IEEE 802.3an
10BaseT 10BASE-F 100BaseTX 1000BaseT 1000Base-SX,LX 10GBaseLH
Скорость, Mbps
Макс. длина сегмента, м
Среда передачи 50-Ом коаксиал (толстый) TP cat 3 - 5 ВОК 1270 нм TP cat 5 TP cat 5e ВОК, 830, 1270 нм TP cat 7
Топология Шина Звезда Звезда Звезда Звезда Звезда Звезда
Тип передачи полудуплекс дуплекс дуплекс дуплекс дуплекс дуплекс дуплекс

Из таблицы видно, что исходная топология общая шина (толстый Ethernet, тонкий Ethernet) достаточно быстро была заменена на звезду.

TokenRing (IEEE 802.5)

Сеть Token Ring была представлена фирмой IBM в 1984 г., как часть предложенного ею способа объединить в сеть весь ряд выпускаемых IBM компьютеров и компьютерных систем. В 1985 комитет IEEE 802 на основе этой технологии принял стандарт IEEE 802.5. Принципиальное отличие от Ethernet - детерминированный мет од доступа к среде в предопределенном порядке. Реализован доступ с передачей маркера (применяемый также в сетях ARCnet, и FDDI).

Кольцевая топология означает упорядоченную передачу информации от одной станции к другой в одном направлении, строго по порядку включения. Кольцевая логическая топология реализуется на основе физиче­ской звезды, в центре которой находится много станционное устройство доступа устройство (MSAU - Multi-Station Access Unit).

В любой момент време­ни передачу данных может вести только одна станция, захватившая маркер доступа (token). При передаче данных в заголовке маркера делается отметка о занятости, и маркер превращается в обрамление начала кадра. Остальные станции побитно транслируют кадр от предыдущей (upstream) станции к последующей (downstream). Станция, которой адресован текущий кадр, сохраняет его копию в своем буфере для последующей обработки и транслирует его далее по кольцу, сделав отметку о получении. Таким образом кадр по кольцу достигает передаю­щей станции, которая удаляет его из кольца (не транслирует дальше). Когда станция заканчивает передачу, она помечает маркер как свободный и передает его дальше по кольцу. Время, в течение которого станция имеет право пользоваться маркером, регламентировано. Захват маркера осуществляется на основе приоритетов, назначаемых станциям.

Эти четыре пары кабеля UTP категории 5 образуют канал, по которому со скоростью 1000 Мбит в секунду данные могут передаваться в обоих направлениях. Поскольку максимальная допустимая скорость передачи данных по кабелю UTP категории 5 составляет не более 125 МГц, канал 1000 Base T должен обеспечивать передачу 8 бит данных в каждый период изменения сигнала (8 нс).

4) Протокол сетевого уровня (англ. Network layer ) - протокол 3-го уровня сетевой модели OSI, предназначается для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию имаршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор.

В пределах семантики иерархического представления модели OSI Сетевой уровень отвечает на запросы обслуживания от Транспортного уровня и направляет запросы обслуживания на Канальный уровень.

Протоколы сетевого уровня маршрутизируют данные от источника к получателю и могут быть разделены на два класса: протоколы с установкой соединения и без него.

· Протоколы с установкой соединения начинают передачу данных с вызова или установки маршрута следования пакетов от источника к получателю. После чего начинают последовательную передачу данных и затем по окончании передачи разрывают связь.

· Протоколы без установки соединения посылают данные, содержащие полную адресную информацию в каждом пакете. Каждый пакет содержит адрес отправителя и получателя. Далее каждое промежуточное сетевое устройство считывает адресную информацию и принимает решение о маршрутизации данных. Письмо или пакет данных передается от одного промежуточного устройства к другому до тех пор, пока не будет доставлено получателю. Протоколы без установки соединения не гарантируют поступление информации получателю в том порядке, в котором она была отправлена, т.к. разные пакеты могут пройти разными маршрутами. За восстановления порядка данных при использовании сетевых протоколов без установки соединения отвечают транспортные протоколы.

Функции Сетевого уровня:

· модели соединения: с установкой соединения и без установки соединения

Сетевой уровень модели OSI может быть как с установкой соединения, так и без него. Для сравнения - Межсетевой уровень (англ. internet ) стека протоколовМодели DoD (Модель TCP/IP) поддерживает только протокол IP, который является протоколом без установки соединения; протоколы с установкой соединения находятся на следующих уровнях этой модели.

· адрес, присвоенный сетевому узлу

Каждый хост в сети должен иметь уникальный адрес, который определяет, где он находится. Этот адрес обычно назначается из иерархической системы. В Интернете адреса известны как адреса протокола IP.


· продвижение данных

Так как многие сети разделены на подсети и соединяются с другими сетями широковещательными каналами, сети используют специальные хосты, которые называются шлюзами или роутерами (маршрутизаторами) для доставления пакетов между сетями. Это также используется в интересах мобильных приложений, когда пользователь двигается от одного приложения к другому, в этом случае пакеты (сообщения) должны следовать за ним. В протоколе IPv4 такая идея описана, но практически не применяется. IPv6 содержит более рациональное решение.

ICMP (англ. Internet Control Message Protocol - протокол межсетевых управляющих сообщений ) - сетевой протокол, входящий в стек протоколов TCP/IP. В основном ICMP используется для передачи сообщений об ошибках и других исключительных ситуациях, возникших при передаче данных, например, запрашиваемая услуга недоступна, или хост, илимаршрутизатор не отвечают. Также на ICMP возлагаются некоторые сервисные функции.

ICMP-сообщения (тип 12) генерируются при нахождении ошибок в заголовке IP-пакета (за исключением самих ICMP-пакетов, дабы не привести к бесконечно растущему потоку ICMP-сообщений об ICMP-сообщениях).

ICMP-сообщения (тип 3) генерируются маршрутизатором при отсутствии маршрута к адресату.

Утилита Ping, служащая для проверки возможности доставки IP-пакетов, использует ICMP-сообщения с типом 8 (эхо-запрос) и 0 (эхо-ответ).

Утилита Traceroute, отображающая путь следования IP-пакетов, использует ICMP-сообщения с типом 11.

ICMP-сообщения с типом 5 используются маршрутизаторами для обновления записей в таблице маршрутизации отправителя.

ICMP-сообщения с типом 4 используются получателем (или маршрутизатором) для управления скоростью отправки сообщений отправителем.

5) Транспортный уровень (англ. Transport layer ) - 4-й уровень сетевой модели OSI, предназначен для доставки данных. При этом не важно, какие данные передаются, откуда и куда, то есть, он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает. Протоколы этого уровня предназначены для взаимодействия типа точка-точка. Пример: TCP, UDP, SCTP.

Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции, например, функции передачи данных без подтверждения приема, и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных.

Некоторые протоколы транспортного уровня, называемые протоколами без установки соединения, не гарантируют, что данные доставляются по назначению в том порядке, в котором они были посланы устройством-источником. Некоторые транспортные уровни справляются с этим, собирая данные в нужной последовательности до передачи их на сеансовый уровень. Мультиплексирование (multiplexing) данных означает, что транспортный уровень способен одновременно обрабатывать несколько потоков данных (потоки могут поступать и от различных приложений) между двумя системами. Механизм управления потоком данных - это механизм, позволяющий регулировать количество данных, передаваемых от одной системы к другой. Протоколы транспортного уровня часто имеют функцию контроля доставки данных, заставляя принимающую данные систему отправлять подтверждения передающей стороне о приеме данных.

UDP (англ. User Datagram Protocol - протокол пользовательских датаграмм) - один из ключевых элементов Transmission Control Protocol/Internet Protocol, набора сетевых протоколов для Интернета. С UDP компьютерные приложения могут посылать сообщения (в данном случае называемые датаграммами) другим хостам по IP-сети без необходимости предварительного сообщения для установки специальных каналов передачи или путей данных. Протокол был разработан Дэвидом П. Ридом в 1980 году и официально определён в RFC 768.

UDP использует простую модель передачи, без неявных «рукопожатий» для обеспечения надёжности, упорядочивания или целостности данных. Таким образом, UDP предоставляет ненадёжный сервис, и датаграммы могут прийти не по порядку, дублироваться или вовсе исчезнуть без следа. UDP подразумевает, что проверка ошибок и исправление либо не нужны, либо должны исполняться в приложении. Чувствительные ко времени приложения часто используют UDP, так как предпочтительнее сбросить пакеты, чем ждать задержавшиеся пакеты, что может оказаться невозможным в системах реального времени. При необходимости исправления ошибок на сетевом уровне интерфейса приложение может задействовать TCP или SCTP, разработанные для этой цели.

Природа UDP как протокола без сохранения состояния также полезна для серверов, отвечающих на небольшие запросы от огромного числа клиентов, например DNS и потоковые мультимедийные приложения вроде IPTV, Voice over IP, протоколы туннелирования IP и многие онлайн-игры.

Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов , передающих дискретную информацию, такую как крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования , скорость передачи сигналов. Кроме того, здесь стандартизируются типы разъемов и назначение каждого контакта.

Физический уровень :

    передача битов по физическим каналам ;

    формирование электрических сигналов ;

    кодирование информации;

    синхронизация ;

    модуляция .

Реализуется аппаратно.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов .

Канальный уровень

На физическом уровне просто пересылаются биты . При этом не учитывается, что в тех сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer ) является проверка доступности среды передачи . Другая задача канального уровня - реализация механизмов обнаружения и коррекции ошибок . Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames ). Канальный уровень обеспечивает корректность передачи каждого кадра помещая специальную последовательность бит в начало и конец каждого кадра , для его выделения, а также вычисляет контрольную сумму , обрабатывая все байты кадра определенным способом, и добавляет контрольную сумму к кадру . Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра . Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров . Необходимо отметить, что функция исправления ошибок для канального уровня не является обязательной, поэтому в некоторых протоколах этого уровня она отсутствует, например в Ethernet и frame relay.

Функции канального уровня

Надежная доставка пакета :

    Между двумя соседними станциями в сети с произвольной топологией.

    Между любыми станциями в сети с типовой топологией:

    проверка доступности разделяемой среды;

    выделение кадров из потока данных, поступающих по сети; формирование кадров при отправке данных;

    подсчет и проверка контрольной суммы .

Реализуются программно-аппаратно.

В протоколах канального уровня , используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации . Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся "общая шина", "кольцо" и "звезда", а также структуры, полученные из них с помощью мостов и коммутаторов . Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

В локальных сетях протоколы канального уровня используются компьютерами, мостами , коммутаторами и маршрутизаторами . В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов .

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов "точка-точка" (как часто называют такие протоколы) могут служить широко распространенные протоколы PPP и LAP-B. В таких случаях для доставки сообщений между конечными узлами через всю сеть используются средства сетевого уровня . Именно так организованы сети X.25. Иногда в глобальных сетях функции канального уровня в чистом виде выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня . Примерами такого подхода могут служить протоколы технологий ATM и frame relay.

В целом канальный уровень представляет собой весьма мощный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами, и тогда поверх них могут работать непосредственно протоколы прикладного уровня или приложения, без привлечения средств сетевого и транспортного уровней. Например, существует реализация протокола управления сетью SNMP непосредственно поверх Ethernet, хотя стандартно этот протокол работает поверх сетевого протокола IP и транспортного протокола UDP. Естественно, что применение такой реализации будет ограниченным - она не подходит для составных сетей разных технологий, например Ethernet и X.25, и даже для такой сети, в которой во всех сегментах применяется Ethernet, но между сегментами существуют петлевидные связи. А вот в двухсегментной сети Ethernet, объединенной мостом , реализация SNMP над канальным уровнем будет вполне работоспособна.

Тем не менее, для обеспечения качественной транспортировки сообщений в сетях любых топологий и технологий функций канального уровня оказывается недостаточно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня - сетевой и транспортный.

Канальный уровень обеспечивает передачу пакетов данных, поступающих от протоколов верхних уровней, узлу назначения, адрес которого также указывает протокол верхнего уровня. Протоколы канального уровня оформляют переданные им пакеты в кадры собственного формата, помещая указанный адрес назначения в одно из полей такого кадра , а также сопровождая кадр контрольной суммой . Протокол канального уровня имеет локальный смысл, он предназначен для доставки кадров данных, как правило, в пределах сетей с простой топологией связей и однотипной или близкой технологией, например в односегментных сетях Ethernet или же в многосегментных сетях Ethernet и Token Ring иерархической топологии, разделенных только мостами и коммутаторами . Во всех этих конфигурациях адрес назначения имеет локальный смысл для данной сети и не изменяется при прохождении кадра от узла-источника к узлу назначения. Возможность передавать данные между локальными сетями разных технологий связана с тем, что в этих технологиях используются адреса одинакового формата, к тому же производители сетевых адаптеров обеспечивают уникальность адресов независимо от технологии.

Другой областью действия протоколов канального уровня являются связи типа "точка-точка" глобальных сетей, когда протокол канального уровня ответственен за доставку кадра непосредственному соседу. Адрес в этом случае не имеет принципиального значения, а на первый план выходит способность протокола восстанавливать искаженные и утерянные кадры , так как плохое качество территориальных каналов, особенно коммутируемых телефонных, часто требует выполнения подобных действий. Если же перечисленные выше условия не соблюдаются, например связи между сегментами Ethernet имеют петлевидную структуру, либо объединяемые сети используют различные способы адресации , как в сетях Ethernet и X.25, то протокол канального уровня не может в одиночку справиться с задачей передачи кадра между узлами и требует помощи протокола сетевого уровня .

Сетевой уровень

Сетевой уровень (Network layer ) служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Функции сетевого уровня достаточно разнообразны. Рассмотрим их на примере объединения локальных сетей.

Протоколы канального уровня локальных сетей обеспечивают доставку данных между любыми узлами только в сети с соответствующей типовой топологией, например топологией иерархической звезды. Это жесткое ограничение, которое не позволяет строить сети с развитой структурой, например сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Можно было бы усложнять протоколы канального уровня для поддержания петлевидных избыточных связей, но принцип разделения обязанностей между уровнями приводит к другому решению. Чтобы, с одной стороны, сохранить простоту процедур передачи данных для типовых топологий, а с другой - допустить использование произвольных топологий, вводится дополнительный сетевой уровень .

На сетевом уровне сам термин "сеть" наделяют специфическим значением. В данном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня , определенный для этой топологии.

Внутри сети доставка данных обеспечивается соответствующим канальным уровнем , а вот доставкой данных между сетями занимается сетевой уровень , который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня .

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами . Маршрутизатор - это устройство, которое собирает информацию о топологии межсетевых соединений и пересылает пакеты сетевого уровня в сеть назначения. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями, или хопов (от слова hop - прыжок), каждый раз выбирая подходящий маршрут . Таким образом, маршрут представляет собой последовательность маршрутизаторов , через которые проходит пакет .

Сетевой уровень - доставка пакета :

    между любыми двумя узлами сети с произвольной топологией;

    между любыми двумя сетями в составной сети ;

    сеть - совокупность компьютеров, использующих для обмена данными единую сетевую технологию;

    маршрут - последовательность прохождения пакетом маршрутизаторов в составной сети .

На рис. 11.8 показаны четыре сети, связанные тремя маршрутизаторами . Между узлами А и В данной сети пролегает два маршрута : первый - через маршрутизаторы 1 и 3, а второй - через маршрутизаторы 1, 2 и 3.

Рис. 11.8. Пример составной сети.

Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня . Эта проблема осложняется тем, что самый короткий путь - не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может с течением времени изменяться. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, таким как надежность передачи.

В общем случае функции сетевого уровня шире, чем функции передачи сообщений по связям с нестандартной структурой, которые мы рассмотрели на примере объединения нескольких локальных сетей. Сетевой уровень также решает задачи согласования разных технологий, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.

Сообщения сетевого уровня принято называть пакетами (packet ). При организации доставки пакетов на сетевом уровне используется понятие "номер сети". В этом случае адрес получателя состоит из старшей части - номера сети и младшей - номера узла в этой сети. Все узлы одной сети должны иметь одну и ту же старшую часть адреса , поэтому термину "сеть" на сетевом уровне можно дать и другое, более формальное, определение: сеть - это совокупность узлов, сетевой адрес которых содержит один и тот же номер сети.

На сетевом уровне определяется два вида протоколов. Первый вид - сетевые протоколы (routed protocols) - реализуют продвижение пакетов через сеть. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня . Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией или просто протоколами маршрутизации (routing protocols) . С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов .

На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне , в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов - Address Resolution Protocol , ARP . Иногда их относят не к сетевому уровню , а к канальному , хотя тонкости классификации не изменяют сути.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов , передающих дискретную информацию, такую как крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования , скорость передачи сигналов. Кроме того, здесь стандартизируются типы разъемов и назначение каждого контакта.

Физический уровень:

  • передача битов по физическим каналам ;
  • формирование электрических сигналов ;
  • кодирование информации;
  • синхронизация ;
  • модуляция .

Реализуется аппаратно.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом .

Примером протокола физического уровня может служить спецификация 10Base -T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45 , максимальную длину физического сегмента 100 метров, манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов .

Канальный уровень

На физическом уровне просто пересылаются биты . При этом не учитывается, что в тех сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer ) является проверка доступности среды передачи . Другая задача канального уровня - реализация механизмов обнаружения и коррекции ошибок . Для этого на канальном уровне - биты группируются в наборы, называемые кадрами ( frames ). Канальный уровень обеспечивает корректность передачи каждого кадра помещая специальную последовательность бит в начало и конец каждого кадра , для его выделения, а также вычисляет контрольную сумму , обрабатывая все байты кадра определенным способом, и добавляет контрольную сумму к кадру . Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра . Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок для канального уровня не является обязательной, поэтому в некоторых протоколах этого уровня она отсутствует, например в Ethernet и frame relay .

Функции канального уровня

Надежная доставка пакета :

  1. Между двумя соседними станциями в сети с произвольной топологией.
  2. Между любыми станциями в сети с типовой топологией:
    • проверка доступности разделяемой среды ;
    • выделение кадров из потока данных, поступающих по сети; формирование кадров при отправке данных ;
    • подсчет и проверка контрольной суммы .

Реализуются программно-аппаратно.

В протоколах канального уровня , используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации . Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с определенной топологией связей , именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся " общая шина ", "кольцо" и "звезда", а также структуры, полученные из них с помощью мостов и коммутаторов . Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring , FDDI , 100VG-AnyLAN .

В локальных сетях протоколы канального уровня используются компьютерами, мостами , коммутаторами и маршрутизаторами . В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов .

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов "точка-точка" (как часто называют такие протоколы) могут служить широко распространенные протоколы PPP и LAP -B. В таких случаях для доставки сообщений между конечными узлами через всю сеть используются средства сетевого уровня . Именно так организованы сети X.25. Иногда в глобальных сетях функции канального уровня в чистом виде выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня . Примерами такого подхода могут служить протоколы технологий ATM и frame relay .

В целом канальный уровень представляет собой весьма мощный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами, и тогда поверх них могут работать непосредственно протоколы прикладного уровня или приложения, без привлечения средств сетевого и транспортного уровней. Например, существует реализация протокола управления сетью SNMP непосредственно поверх Ethernet, хотя стандартно этот протокол работает поверх сетевого протокола IP и транспортного протокола UDP . Естественно, что применение такой реализации будет ограниченным - она не подходит для составных сетей разных технологий, например Ethernet и X.25, и даже для такой сети, в которой во всех сегментах применяется Ethernet, но между сегментами существуют петлевидные связи. А вот в двухсегментной сети Ethernet, объединенной мостом , реализация SNMP над канальным уровнем будет вполне работоспособна.

Тем не менее, для обеспечения качественной транспортировки сообщений в сетях любых топологий и технологий функций канального уровня оказывается недостаточно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня - сетевой и транспортный.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!