Фильтр для 4 ом динамик схема. Расчет пассивных разделительных фильтров в акустических системах

В своей жизни вы не раз слышали слово “фильтр”. Фильтр для воды, воздушный фильтр, масляной фильтр, “фильтруй базар” в конце концов). В воздушном, водяном, масляном и других видах фильтров происходит очистка от посторонних частиц и примесей. Но что же фильтрует электрический фильтр? Ответ простой: частоту.

Что такое электрический фильтр

Электрический фильтр – это устройство для выделения желательных компонентов спектра (частот) и/или для подавления нежелательных. Для остальных частот, которые не входят в , фильтр создает большое затухание, вплоть до полного их исчезновения.

Характеристика идеального фильтра должна вырезать строго определенную полосу частота и “давить” другие частоты до полного их затухания. Ниже пример идеального фильтра, который пропускает частоты до какого-то определенного значения частоты среза.

На практике такой фильтр реализовать нереально. При проектировании фильтров стараются как можно ближе приблизиться к идеальной характеристике. Чем ближе к идеальному фильтру, тем лучше он будет исполнять свою функцию фильтрации сигналов.

Фильтры, которые собираются только на пассивных радиоэлементах, таких как , называют пассивными фильтрами . Фильтры, которые в своем составе имеют один или несколько активных радиоэлементов, типа или , называют активными фильтрами .

В нашей статье мы будем рассматривать пассивные фильтры и начнем с самых простых фильтров, состоящих из одного радиоэлемента.

Одноэлементные фильтры

Как вы поняли из названия, одноэлементные фильтры состоят из одного радиоэлемента. Это может быть либо конденсатор, либо катушка индуктивности. Сами по себе катушка и конденсатор не являются фильтрами – это ведь по сути просто радиоэлементы. А вот вместе с и с нагрузки их уже можно рассматривать как фильтры. Здесь все просто. Реактивное сопротивление конденсатора и катушки зависят от частоты. Подробнее про реактивное сопротивление вы можете прочитать в статье.

В основном одноэлементные фильтры применяются в аудиотехнике. Для фильтрации используется либо катушка, либо конденсатор, в зависимости от того, какие частоты надо выделить. Для ВЧ-динамика (пищалки), мы последовательно с динамиком соединяем конденсатор, который будет пропускать через себя ВЧ-сигнал почти без потерь, а низкие частоты будет глушить.


Для сабвуферного динамика нам нужно выделить низкие частоты (НЧ), поэтому последовательно с сабвуфером соединяем катушку индуктивности.


Номиналы одиночных радиоэлементов можно, конечно, рассчитать, но в основном подбирают на слух.

Для тех, кто не желает заморачиваться, трудолюбивые китайцы создают готовые фильтры для пищалок и сабвуфера. Вот один из примеров:


На плате мы видим 3 клеммника: входной клеммник (INPUT), выходной под басы (BASS) и клеммник под пищалку (TREBLE).

Г-образные фильтры

Г-образные фильтры состоят из двух радиоэлементов, один или два из которых имеют нелинейную АЧХ.

RC-фильтры

Думаю, начнем с самого известного нам фильтра, состоящего из резистора и конденсатора. Он имеет две модификации:



С первого взгляда можно подумать, что это два одинаковых фильтра, но это не так. В этом легко убедиться, если построить АЧХ для каждого фильтра.

В этом деле нам поможет Proteus. Итак, АЧХ для этой цепи

будет выглядеть вот так:


Как мы видим, АЧХ такого фильтра беспрепятственно пропускает низкие частоты, а с ростом частоты ослабляет высокие частоты. Поэтому, такой фильтр называют фильтром низких частот (ФНЧ).

А вот для этой цепи

АЧХ будет выглядеть таким образом


Здесь как раз все наоборот. Такой фильтр ослабляет низкие частоты и пропускает высокие частоты, поэтому такой фильтр называется фильтром высокой частоты (ФВЧ).

Наклон характеристики АЧХ

Наклон АЧХ в обоих случаях равняется 6 дБ/октаву после точки, соответствующей значению коэффициента передачи в -3дБ, то есть частоты среза. Что означает запись 6 дБ/октаву? До или после частоты среза, наклон АЧХ принимает вид почти прямой линии при условии, что коэффициент передачи измеряем в . Октава – это соотношение частот два к одному. В нашем примере наклон АЧХ в 6 дБ/октаву говорит о том, что при увеличении частоты в два раза, у нас прямая АЧХ растет (или падает) на 6 дБ.

Давайте рассмотрим этот пример

Возьмем частоту 1 КГц. На частоте от 1 КГц до 2 КГц падение АЧХ составит 6 дБ. На промежутке от 2 КГц и до 4 КГц АЧХ снова падает на 6 дБ, на промежутке от 4 КГц и до 8 КГц снова падает на 6 дБ, на частоте от 8 КГц и до 16 КГц затухание АЧХ снова будет 6 дБ и тд. , следовательно, наклон АЧХ составляет 6 дБ/октаву. Есть также такое понятие, как дБ/декада. Оно используется реже и обозначает разницу между частотами в 10 раз. Как найти дБ/декаду можно прочитать в статье.

Чем больше крутизна наклона прямой АЧХ, тем лучше избирательные свойства фильтра:


Фильтр, с характеристикой наклона в 24 дБ/октаву явно будет лучше, чем в 6 дБ/октаву, так как становится более приближенным к идеальному.

RL-фильтры

Почему бы не заменить конденсатор катушкой индуктивности? Получаем снова два типа фильтров:



Для этого фильтра

АЧХ принимает такой вид:


Получили все тот же самый ФНЧ

а для такой цепи


АЧХ примет такой вид


Тот же самый фильтр ФВЧ

RC и RL фильтры называют фильтрами первого порядка и они обеспечивают наклон характеристики АЧХ в 6 дБ/октаву после частоты среза.

LC-фильтры

А что если заменить резистор конденсатором? Итого мы имеем в схеме два радиоэлемента, реактивное сопротивление которых зависит от частоты. Здесь получаются также два варианта:



Давайте рассмотрим АЧХ этого фильтра



Как вы могли заметить, его АЧХ в области низких частот получилась наиболее плоской и заканчивается шипом. Откуда вообще он взялся? Мало того, что цепь собрана из пассивных радиоэлементов, так она еще и усиливает сигнал по напряжению в области шипа!? Но не стоит радоваться. Усиливает по напряжению, а не по мощности. Дело в том, что мы получили , у которого, как вы помните, на частоте резонанса возникает резонанс напряжений. При резонансе напряжений, напряжение на катушке равняется напряжению на конденсаторе.

Но это еще не все. Это напряжение в Q раз больше, чем напряжение, подаваемое на последовательный колебательный контур. А что такое Q? Это . Вас этот шип не должен смущать, так как высота пика зависит от добротности, которая в реальных схемах составляет небольшое значение. Примечательна эта схема также тем, что наклон ее характеристики составляет 12 дБ/октаву, что в два раза лучше, чем у RC и RL фильтров. Кстати, если даже максимальная амплитуда превышает значения в 0 дБ, то все равно полосу пропускания определяем на уровне в -3 дБ. Об этом тоже не стоит забывать.

Все то же самое касается и ФВЧ фильтра



Как я уже сказал, LC фильтры называют уже фильтрами второго порядка и они обеспечивают наклон АЧХ в 12 дБ/октаву.

Сложные фильтры

Что будет, если соединить два фильтра первого порядка друг за другом? Как ни странно, получится фильтр второго порядка.


Его АЧХ будет более крутой, а именно 12 дБ/октаву, что характерно для фильтров второго порядка. Догадайтесь, какой наклон будет у фильтра третьего порядка;-) ? Все верно, прибавляем 6 дБ/октаву и получаем 18 дБ/октаву. Соответственно, у фильтра 4 -ого порядка наклон АЧХ будет уже 24 дБ/октаву и тд. То есть, чем больше звеньев мы соединим, тем круче будет наклон АЧХ и тем лучше будут характеристики фильтра. Все оно так, но вы забыли то, что каждый последующий каскад вносит свою лепту в ослабление сигнала.

В приведенных схемах мы строили АЧХ фильтра без внутреннего сопротивления генератора а также без нагрузки. То есть в данном случае сопротивление на выходе фильтра равняется бесконечности. Значит, желательно делать так, чтобы каждый последующий каскад имел значительно бОльшее входное сопротивление, чем предыдущий. В настоящее время каскадирование звеньев уже кануло в лету и сейчас используют активные фильтры, которые построены на ОУ.

Разбор фильтра с Алиэкспресс

Для того, чтобы вы уловили предыдущую мысль, мы разберем простой пример от наших узкоглазых братьев. На Алиэкпрессе продаются различные фильтры для сабвуфера. Рассмотрим один из них.


Как вы заметили, на нем написаны характеристики фильтра: данный тип фильтра рассчитан на сабвуфер мощностью 300 Ватт, наклон его характеристики 12 дБ/октаву. Если соединять к выходу фильтра саб с сопротивлением катушки в 4 Ома, то частота среза составит 150 Гц. Если же сопротивление катушки саба 8 Ом, то частота среза составит 300 Гц.

Для полных чайников продавец даже привел схему в описании товара. Выглядит она вот так:



Чаще всего можно увидеть прямо на динамиках значение сопротивления катушки на постоянном токе: 2 Ω, 4 Ω, 8 Ω. Реже 16 Ω. Значок Ω после цифр обозначает Омы. Также не забывайте, что катушка в динамике обладает индуктивностью.

Как ведет себя катушка индуктивности на разных частотах?


Как вы видите, на постоянном токе катушка динамика обладает активным сопротивлением, так как она намотана из медного провода. На низких частотах в дело вступает , которое вычисляется по формуле:

где

Х L - сопротивление катушки, Ом

П - постоянная и равна приблизительно 3,14

F - частота, Гц

L - индуктивность, Гн

Так как сабвуфер предназначен именно для низких частот, значит, последовательно с активным сопротивлением самой катушки добавляется реактивное сопротивление этой же самой катушки. Но в нашем опыте мы это учитывать не будем, так как не знаем индуктивность нашего воображаемого динамика. Поэтому, все расчеты в опыте берем с приличной погрешностью.

Как утверждает китаец, при нагрузке на фильтр динамика в 4 Ома, его полоса пропускания будет доходить до 150 Герц. Проверяем так ли это:


Его АЧХ


Как вы видите, частота среза на уровне в -3 дБ составила почти 150 Герц.

Нагружаем наш фильтр динамиком в 8 Ом


Частота среза составила 213 Гц.


В описании на товар утверждалось, что частота среза на 8-омный саб составит 300 Гц. Думаю, можно поверить китайцам, так как во-первых, все данные приближенные, а во-вторых, симуляция в программах далека от реальности. Но суть опыта была не в этом. Как мы видим на АЧХ, нагружая фильтр сопротивлением большего номинала, частота среза сдвигается в большую сторону. Это также надо учитывать при проектировании фильтров.

Полосовые фильтры

В прошлой статье мы с вами рассматривали один из примеров полосового фильтра


Вот так выглядит АЧХ этого фильтра.


Особенность таких фильтров такова, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее K u max /√2.


Полосовые резонансные фильтры

Если нам надо выделить какую-то узкую полосу частот, для этого применяются LC-резонанcные фильтры. Еще их часто называют избирательными. Давайте рассмотрим одного из их представителя.


LC-контур в сочетании с резистором R образует . Катушка и конденсатор в паре создают , который на частоте резонанса будет иметь очень высокий импеданс, в народе – обрыв цепи. В результате, на выходе цепи при резонансе будет значение входного напряжения, при условии если мы к выходу такого фильтра не цепляем никакой нагрузки.

АЧХ данного фильтра будет выглядеть примерно вот так:


Если взять по оси Y значение коэффициента передачи, то график АЧХ будет выглядеть следующим образом:


Постройте прямую на уровне в 0,707 и оцените полосу пропускания такого фильтра. Как вы можете заметить, она будет очень узкой. Коэффициент добротности Q позволяет оценить характеристику контура. Чем большее добротность, тем острее характеристика.

Как же определить добротность из графика? Для этого надо найти резонансную частоту по формуле:

где

f 0- это резонансная частота контура, Гц

L - индуктивность катушки, Гн

С - емкость конденсатора, Ф

Подставляем L=1mH и С=1uF и получаем для нашего контура резонансную частоту в 5033 Гц.

Теперь надо определить полосу пропускания нашего фильтра. Делается это как обычно на уровне в -3 дБ, если вертикальная шкала в , либо на уровне в 0,707, если шкала линейная.

Давайте увеличим верхушку нашей АЧХ и найдем две частоты среза.


f 1 = 4839 Гц


f 2 = 5233 Гц

Следовательно, полоса пропускания Δf=f 2 – f 1 = 5233-4839=394 Гц

Ну и осталось найти добротность:

Q=5033/394=12,77

Режекторные фильтры

Другой разновидностью LC схем является последовательная LC-схема.


Ее АЧХ будет выглядеть примерно вот так:


Конечно, этот недостаток можно устранить, поместив катушку индуктивности в экран из мю-металла, но от этого она станет только дороже. Проектировщики всячески пытаются избежать катушек индуктивности, если это возможно. Но, благодаря прогрессу, в настоящее время катушки не используются в активных фильтрах, построенных на ОУ.

Заключение

В радиоэлектронике фильтры находят множество применений. Например, в области электросвязи полосовые фильтры используются в диапазоне звуковой частоты (20 Гц-20 КГц). В системах сбора данных используются фильтры низких частот (ФНЧ). В музыкальной аппаратуре фильтры подавляют шумы, выделяют определенную группу частот для соответствующих динамиков, а также могут изменять звучание. В системах источников питания фильтры часто используются для подавления частот, близких к частоте сети 50/60 Герц. В промышленности фильтры применяются для компенсации косинуса фи, а также используются как фильтры гармоник.

Резюме

Электрические фильтры используются для выделения какого-либо диапазона частота и глушат ненужные частоты.

Фильтры, построенные на пассивных радиоэлементах, таких как резисторы, катушки индуктивности и конденсаторы, называют пассивными фильтрами. Фильтры в которых имеется активный радиоэлемент, типа транзистора или ОУ, называются активными фильтрами.

Чем круче спад характеристики АЧХ, тем лучше избирательные свойства фильтра.

При участии JEER

Практически все современные высококачественные акустические системы являются многополосными, то есть состоящими из нескольких громкоговорителей, каждый из которых работает в своем диапазоне частот. Это обусловлено тем, что практически невозможно создать динамический громкоговоритель, который обеспечивал бы излучение в широком диапазоне частот с малым уровнем искажений (в первую очередь, интермодуляционных, а также переходных, нелинейных и др.) и широкой характеристикой направленности. Поэтому в акустических системах (как профессиональных, так и бытовых) используют несколько громкоговорителей (низкочастотные, среднечастотные, высокочастотные, иногда супервысокочастотные), а для распределения энергии звукового сигнала между ними включают электрические разделительные фильтры.

Влияние разделительных фильтров на формирование характеристик акустических систем в предыдущие годы недооценивалось: им отводилась лишь роль ослабления сигнала за пределами рабочей полосы частот громкоговорителей. Однако развитие техники акустических систем категории Hi-Fi заставило пересмотреть взгляд на роль разделительных фильтров в акустических системах и на методику их проектирования. Многочисленные теоретические и экспериментальные работы, посвященные влиянию разделительных фильтров на коррекцию характеристик излучателей и формирование объективных и субъективных характеристик акустических систем, заставили считать разделительные фильтры одним из важнейших компонентов акустических систем, с помощью которого можно синтезировать многие необходимые электроакустические характеристики и добиться значительного прогресса в обеспечении естественности звучания.

Прежде чем переходить к анализу различных типов фильтров, применяемых в акустических системах, и методам их расчета, остановимся на определении основных параметров фильтров.

Параметры фильтров
Фильтром называется устройство, пропускающее определенные спектральные составляющие в сигнале и не пропускающее (ослабляющее) остальные. Фильтр может быть реализован в виде аналоговой схемы (пассивные и активные фильтры), а также реализован программно или в виде цифрового устройства (цифровые фильтры).

В современных акустических системах применяются как пассивные, так и активные фильтры (кроссоверы). Первые включаются после общего усилителя в каждом канале, вторые включаются до усилителя. Общая схема включения показана на рис.1. Активные фильтры имеют ряд преимуществ перед пассивными фильтрами, поскольку их значительно легче перестраивать, можно реализовать различными способами, в них отсутствуют потери мощности и т. д. Однако активные фильтры проигрывают пассивным по таким параметрам, как динамический диапазон, нелинейные искажения, уровень шумов и др. Методы проектирования активных фильтров широко освещены в специальной литературе, поэтому здесь остановимся только на методах проектирования пассивных фильтров, которые широко используются в современных акустических системах.

Основными параметрами, определяющими свойства фильтров, являются:
- полоса пропускания — область частот, в которой фильтры пропускают сигнал;
- полоса задерживания — область частот, где фильтры существенно подавляют сигнал;
- частота среза f ср — частота, на которой сигнал ослабляется на 3 дБ по отношению к среднему уровню в полосе пропускания.

По характеру расположения полосы пропускания и полосы задерживания фильтры разделяются на четыре основных типа.

Фильтры нижних частот (ФНЧ) пропускают низкочастотные составляющие в спектре сигнала (от нуля до частоты среза) и подавляют высокочастотные. Используются для низкочастотных громкоговорителей. Форма частотной характеристики показана на рис. 2.

Фильтры высоких частот (ФВЧ) пропускают высокочастотные составляющие (от частоты среза и выше) и подавляют низкочастотные. Применяются для высокочастотных громкоговорителей. Форма АЧХ показана на рис. 2.

Полосовые фильтры (ПФ) пропускают определенные полосы частот (от f ср1 до f ср2) и подавляют нижние и верхние частоты. Применяются для среднечастотных громкоговорителей, рис. 2.

Существуют также режекторные фильтры, которые представляют собой комбинацию низкочастотного и высокочастотного фильтров. Они подавляют спектральные составляющие сигнала в определенной полосе частот и пропускают в других полосах. Применяются иногда в акустических системах для вырезания отдельных пиков и провалов на АЧХ.

Кроме того, каждый из перечисленных фильтров характеризуется следующими параметрами: крутизной спада АЧХ при переходе от полосы пропускания к полосе задерживания, неравномерностью в полосе пропускания и задерживания, резонансной частотой и добротностью (Q). В зависимости от структуры фильтра и количества элементов в нем может быть обеспечена разная крутизна спада АЧХ. Обычно в акустических системах используются фильтры с крутизной спада 12 дБ/окт, 18 дБ/окт и 24 дБ/окт (рис. 3), которые, соответственно, называются фильтрами второго, третьего и четвертого порядков.

Простейшая структура LC-фильтра низких частот второго порядка показана на рис. 4. Она включает в себя следующие элементы: индуктивность L, реактивное сопротивление которой прямо пропорционально частоте (XL = 2πfL), и емкость C, реактивное сопротивление которой обратно пропорционально частоте (ХС = 1/2πfC). Поэтому представленная на рис. 4а цепь пропускает низкие частоты (поскольку сопротивление индуктивности L мало на низких частотах) и обеспечивает затухание высоких частот. Фильтр высоких частот имеет обратную структуру (рис. 4б) и, соответственно, пропускает высокие частоты и задерживает низкие.

Вид АЧХ фильтров высоких частот второго порядка при разных значениях добротности показан на рис. 5. Резонансная частота такого фильтра определяется как f=1/(LC)1/2, а добротность как Q = [(R2C)/L]1/2.

Из рис. 5 видно, что изменения значения добротности меняет характер спада АЧХ от гладкого (при Q = 0.707) до спада с подъемом на частоте резонанса (Q = 1).

По имени ученых, которые математически описали передаточные функции фильтров (то есть их формы частотных характеристик), они получили разное название: фильтры с добротностью Q = 1 называются фильтрами Чебышева, Q = 0.707 — Баттерворта, Q = 0.58 — Бесселя, Q = 0.49 — Линквица-Риле. Каждый из указанных типов фильтров имеет свои преимущества и недостатки.

ПЕРЕДАТОЧНАЯ ФУНКЦИЯ

Под передаточной функцией фильтра понимается отношение комплексной амплитуды напряжения на выходе фильтра к комплексной амплитуде напряжения на входе. Обычно передаточные функции физически реализуемых и устойчивых линейных цепей описываются в виде математических формул, знаменатели которых являются выражениями следующего вида (полиномами): Gn(s) = ansn+a n-1sn-1+…….+a1s+1. Порядок фильтра определяется степенью n от комплексной частоты s, которая связана с обычной круговой частотой как s = jω. (величина j называется мнимой единицей). Выбор вида коэффициентов аn определяет принадлежность фильтров к типу Баттерворта, Чебышева и др. Например, полиномы Баттерворта разных порядков имеют вид В1 (s) = (1+s); B2 (s) = (1+1,414s+s2) и т. д.

В акустических системах проблема выбора фильтров усложняется тем, что необходимо выбрать три или два (в зависимости от количества полос) типа фильтров одинаковых или разных порядков, которые совместно с громкоговорителями обеспечивали бы суммарные характеристики акустической системы (такие как амплитудно-частотная характеристика — АЧХ, фазочастотная характеристика — ФЧХ, групповое время задерживания — ГВЗ, и др.) с требуемыми параметрами внутри эффективно-воспроизводимого диапазона частот.

История создания фильтров
История создания разделительных фильтров начинается одновременно с появлением многополосных акустических систем. Одну из первых теорий разработали в 30-е годы инженеры G. A. Campbell и О. J. Zobel из фирмы Bell Labs (США). Первые публикации относятся к этому же периоду, их авторы K. Hilliard и H. Kimball работали в звуковом отделе фирмы Metro Goldwin Meyer. В 1936 году в мартовском номере Academy Research Council Technical Bulletin была опубликована их статья "Разделительные фильтры для громкоговорителей". В январе 1941 года K. Hilliard в журнале Electronics Magazine также опубликовал работу "Разделительные фильтры громкоговорителей", содержавшую все необходимые формулы для создания цепей Баттерворта первого и третьего порядков (как для параллельных, так и для последовательных схем). К 50-м годам фильтры Баттерворта были признаны предпочтительными для разделительных целей акустических систем. Тогда же в 60-х J. R. Ashley и R. Small впервые описали свойства "всепропускающих" фильтрующих схем, а также линейно-фазовых цепей.

Выяснению количественного соотношения затухания, вносимого фильтрами вне полосы пропускания, и величины интермодуляционных искажений вследствие перекрывания полос акустических систем, была посвящена статья "Фильтрующие цепи и модуляционные искажения" (автор R. Small), опубликованная в JAES в 1971 году. В ней было показано, что минимальная величина затухания должна быть 12 дБ/окт, чтобы предотвратить искажения в полосе перекрытия. Тогда же Ashley и L. М. Неnnе исследовали "всепропускающие" и "фазокогерентные" свойства фильтров Баттерворта третьего порядка. В 1976 году S. Linkwitz исследовал полярную диаграмму направленности для двухполосных систем с разнесенными излучателями и убедился, что акустические системы с разделительными фильтрами Линквитца-Риле обеспечивают ее симметричность.

Чуть позднее P. Garde дал полное описание всепропускающих фильтров и их разновидностей. Используя его идеи, D. Fink в соавторстве с Е. Long развил метод коррекции горизонтального (то есть глубинного) смещения головок громкоговорителей в акустических системах путем введения линий задержки в фильтр. Существенный вклад в теорию фильтрации внесли W. Marshall-Leach и R. Bullock, которые впервые ввели понятие оптимизации фильтров по типу и порядку с учетом смещения головок по двум осям. В продолжение этих работ R. Bullock описал свойства трехполосных симметричных фильтров и доказал, что трехполосная система фильтров не может быть получена как простая комбинация двухполосных, вопреки бытовавшему мнению. S. Lipshitz и J. Vanderkooy в серии статей рассмотрели различные варианты построения фильтров с минимально фазовыми характеристиками.

Новый этап в исследовании и проектировании многополосных акустических систем с разделительными фильтрами наступил с началом активной компьютеризации расчетов на основе программ ХОРТ, CACD, CALSOB, Filter Designer, LEAP 4.0 и др.

До недавнего времени конструирование разделительных фильтров в акустических системах шло практически методом "проб и ошибок". Это объясняется тем, что все теоретические работы прошлых лет, посвященные расчету разделительных фильтров в акустических системах, исходили из условия идеальности самих громкоговорителей. При анализе свойств разделительных фильтров того или иного типа и рассмотрении их влияния на характеристики акустических систем пренебрегали направленными свойствами громкоговорителей и условиями их физического размещения в корпусе акустической системы. Считали, что громкоговорители обладают плоской АЧХ, не вносят фазовых сдвигов в воспроизводимый сигнал и имеют активное входное сопротивление. Вследствие сказанного разработчики часто сталкивались с тем, что разделительные фильтры, обеспечивающие в идеализированных условиях требуемые характеристики, оказывались неприемлемыми при работе с реальными громкоговорителями, имеющими собственные амплитудно-частотные и фазочастотные искажения, комплексное входное сопротивление и обладающими направленными свойствами. Это и явилось причиной интенсификации в последние годы работ по созданию оптимизационных методов расчета разделительных фильтров-корректоров.

Выбор частот разделения
Как уже было отмечено, разделительные фильтры оказывают существенное влияние на такие характеристики многополосных акустических систем, как АЧХ, ФЧХ, ГВЗ, характеристики направленности, распределение мощности входного сигнала между излучателями, входное сопротивление акустической системы, уровень нелинейных искажений.

Начальным этапом в проектировании разделительных фильтров в многополосных акустических системах является обоснованный выбор частот разделения (частот среза) низкочастотного, средне-частотного и высокочастотного каналов. При выборе частот разделения обычно используют следующие предпосылки.

1. Обеспечение возможно более равномерных характеристик направленности, то есть отсутствия "скачков" ширины диаграммы направленности при переходе от низкочастотного к среднечастотному и от средне- к высокочастотному громкоговорителю, поскольку в той области частот, где они работают вместе, при отсутствии фильтра, диаграмма направленности резко сужается за счет расширения площади излучения.

2. Сохранение плавного изменения ширины характеристики направленности (по той же причине). Громкоговорители стараются размещать как можно ближе друг к другу и располагать их друг над другом в вертикальной плоскости (что позволяет избежать искажений характеристики направленности в горизонтальной плоскости, так как это отрицательно сказывается на воспроизведении стереопанорамы). Если выбор частоты разделения и расстояния между громкоговорителями влияет на ширину характеристики направленности, то соотношение фаз и амплитуд сигналов разделяемых частотных каналов влияет на ориентацию характеристики направленности в пространстве. Различные типы фильтров, как будет показано далее, в разной степени влияют на наклон характеристики направленности в пространстве в области частот разделения.

3. Ослабление пиков и провалов на АЧХ громкоговорителей, возникающих из-за потери поршневого характера движения диффузора. Выбор частоты среза и крутизны спада АЧХ фильтров для низкочастотных и среднечастотных громкоговорителей стараются осуществлять таким образом, чтобы первые резонансные пики и провалы ослаблялись не менее, чем на 20 дБ.

4. Ограничение амплитуды смещения подвижных систем средне- и высокочастотных громкоговорителей в низкочастотной части излучаемого ими спектра (и, соответственно, подводимой мощности) до значений, определяемых их механической и тепловой прочностью, что повышает надежность их работы и снижает уровень нелинейных искажений. Эти задачи регулируются как выбором частоты среза, так и выбором крутизны среза, которая должна составлять не менее 12 дБ/окт.

5. Обеспечение требуемого уровня звукового давления, поскольку с повышением частоты среза в области высоких частот можно увеличить уровень подаваемого напряжения, например, на высокочастотный громкоговоритель (поскольку амплитуды смещения диффузора с повышением частоты понижаются). Это позволяет увеличить, соответственно, уровень звукового давления в высокочастотной части АЧХ.

6. Снижение уровня нелинейных искажений, в частности, за счет эффекта Доплера (возникающих при модуляции высокочастотных составляющих низкочастотными компонентами сигнала).

Как правило, частоты среза в современных трехполосных акустических системах находятся в пределах: для низкочастотного громкоговорителя — 500...1000 Гц, для среднечастотного — от 500...1000 Гц до 5000...7000 Гц, для высокочастотного — 2000...5000 Гц.

Влияние на суммарные характеристики
Анализ влияния разделительных фильтров на формирование суммарных АЧХ, ФЧХ и других характеристик акустических систем удобно производить на некоторой идеализированной модели, в которой предполагается, что громкоговорители имеют активное сопротивление и идеальные характеристики (плоская АЧХ, линейная ФЧХ, постоянный сдвиг фаз между излучателями и др.). При расчете фильтров необходимо предварительно выбрать частоту среза (как уже было показано ранее), порядок и тип фильтра (Баттерфорта, Чебышева, Линквитца-Риле или др.).

По получаемым суммарным характеристикам фильтры, обычно применяемые в акустических системах, можно разделить на три группы: фильтры линейно-фазовые (in-phase), фильтры всепропускающие-(all-pass) и все остальные.

Фильтры линейно-фазовые (in-phase) обеспечивают частотно-независимую суммарную АЧХ, линейную ФЧХ (точнее, равную нулю на всех частотах), а также равную нулю ГВЗ. Примером могут служить фильтры Баттерворта первого порядка. Суммарные характеристики для двухполосной системы с такими фильтрами показаны на рис. 6. Опыт их использования в акустических системах показал, что они обладают рядом недостатков: плохой избирательной способностью, большой неравномерностью характеристик мощности сигнала, плохой характеристикой направленности в полосе раздела и др. Поэтому в настоящее время они в акустических системах категории Hi-Fi не применяются.

Фильтры всепропускающие (all-pass) обеспечивают плоскую суммарную АЧХ, частотно-зависимые ФЧХ и ГВЗ. Требования к линейности ФЧХ является избыточным для акустических систем — достаточно, чтобы их ГВЗ были ниже порогов слышимости (как показывают результаты измерений, фильтры такого типа вносят искажения ГВЗ в полосе раздела, удовлетворяющие этим требованиям). К этому типу фильтров относятся фильтры Баттерворта нечетких порядков и фильтры Линквица-Риле четных порядков. При этом свойства фильтров реализуются при разной полярности включения каналов: для 2, 6, 10 порядков требуется включение каналов в противофазе, для 4, 8, 12 — нет. Для нечетных порядков: 1, 5, 9 должны включаться синфазно, 3,7… —противофазно. Суммарные и поканальные характеристики фильтров Линквица-Риле второго порядка и Баттерворта третьего порядка для двухканальной идеализированной акустической системы показаны на рис. 7 и рис. 8. Следует отметить (будет показано далее), что фильтры нечетких порядков создают поворот главного лепестка характеристики направленности в области частоты раздела.

Существует довольно большой класс фильтров, которые применяются в акустических системах, но они не относятся к "всепропускающему" типу. Сюда включаются фильтры второго и четвертого порядка Баттерворта, второго и четвертого порядка Бесселя, группа ассиметричных фильтров четвертого порядка Лежандра, Гаусса и др. Они не дают суммарную плоскую характеристику, но этот недостаток можно частично исправить, если сделать частоты среза между громкоговорителями несовпадающими. Например, на рис. 9а показаны характеристики фильтра Баттерворта четвертого порядка с пиком АЧХ в 3 дБ на частоте раздела, равной 1000 Гц. Если несколько разнести частоты, то есть сделать частоту раздела для НЧ 885 Гц, а для ВЧ 1138 Гц, то пик на АЧХ исчезает (рис. 9б).



Как уже было сказано, выбор типов фильтров для низко-, средне- и высокочастотного громкоговорителя кроме обеспечения плоской АЧХ в полосах раздела, определяется требованием к обеспечению симметричности характеристики направленности акустической системы.

Внутри полосы пропускания каждого фильтра характеристика направленности акустической системы определяется характеристикой направленности каждого громкоговорителя, но внутри полосы раздела (полосы перекрытия фильтров) они работают совместно, то есть имеются два излучателя (например, средне и высокочастотный), которые разнесены в пространстве и работают на одной и той же частоте раздела. Пример такой системы показан на рис. 10. Пусть для простоты это будут два одинаковых излучателя, работающих в поршневом режиме с одинаковыми характеристиками направленности. На оси OA сигналы приходят в одинаковой фазе и складываются. Если оценить звуковое давление на оси OA", где фазовый сдвиг за счет разности пути от одного и другого громкоговорителя составит φ=π (то есть 180 град), то сигналы будут складываться в противофазе и на характеристике направленности появится провал. При дальнейшем сдвиге от оси в точках, где разница фаз составит 2π (то есть 360 град), опять появится пик. В целом характеристика направленности будет иметь трехлепестковый характер (рис. 10).

Ширина главного лепестка характеристики направленности на частоте раздела зависит от отношения расстояния между громкоговорителями к длине волны, а наклон лепестка зависит от соотношения амплитуд и фаз разделяемых каналов, что определяется также и типом выбранных фильтров.

Для уменьшения этого явления надо стараться уменьшить расстояние между громкоговорителями (например, за счет применения коаксиальных громкоговорителей), уменьшить ширину полосы раздела (за счет выбора фильтров более высоких порядков) и, наконец, выбрать соответствующий тип фильтра, поскольку каждый фильтр вносит свои частотно-зависимые фазовые сдвиги.

Например, при использовании фильтров третьего порядка типа Баттерворта происходит поворот главного лепестка характеристики направленности вниз (при включении громкоговорителей в одинаковой фазе), рис. 11. При включении громкоговорителей в противофазе (то есть изменении их полярности) лепесток характеристики направленности смещается в другую сторону относительно оси.

Анализ фильтров различных типов и порядков показал, что фильтры четных порядков (всепропускающего типа) не изменяют симметричности направления лепестков, фильтры нечетных порядков поворачивают лепесток вниз или вверх. Симметричные характеристики направленности обеспечивают наибольшую равномерность излучаемой акустической мощности.

Помимо влияния на характеристику направленности по АЧХ фильтры могут оказывать влияние на фазочастотные характеристики и ГВЗ в полосе раздела. То есть характер переходных процессов, несмотря на симметрию АЧХ, может отличаться при одинаковых углах смещения в верхней и нижней полуплоскости, и ГВЗ, будучи ниже порогов слышимости на оси, могут превосходить пороги слышимости в других точках пространства, тем самым ухудшая качество звучания.

Следует еще раз напомнить, что все сделанные выводы относятся только к случаю идеальных характеристик громкоговорителей. Учет реальных характеристик производится с помощью современных компьютерных программ.

Расчет пассивных акустических фильтров
Приступая к расчету пассивных акустических фильтров, необходимо уже четко определиться с конфигурацией системы (количеством полос воспроизведения, типами головок громкоговорителей и их параметрами, видом оформления — корпуса), а также выбрать порядок и тип фильтров в зависимости от основных задач, которые должны решаться при проектировании акустической системы: плоская АЧХ, линейная ФЧХ, симметричная характеристика направленности и др.

Поскольку в настоящее время в акустических системах чаще всего применяются фильтры типа "всепропускающих" (all-pass) с плоской АЧХ, то приведем приближенный расчет такого типа фильтров (более точные расчеты выполняются компьютерными методами).

Сначала разделительные фильтры рассчитываются из условия, что они нагружены на чисто активное сопротивление и питаются от генератора напряжения с малым выходным сопротивлением. Затем принимаются меры для учета влияния комплексной частотно-зависимой нагрузки громкоговорителей.

Расчет начинается с определения порядка фильтров и расчета элементов фильтра-прототипа. Фильтром-прототипом называется фильтр лестничного типа, элементы которого нормированы относительно единичной частоты среза и единичной нагрузки. Затем рассчитывается фильтр нижних частот для реальной частоты среза и реальной нагрузки, а из него путем преобразования частоты находятся элементы фильтра верхних частот и полосового фильтра.

Нормированные значения элементов фильтров-прототипов с первого по шестой порядок приведены в таблице 1.

Значения этих элементов даны только для фильтров "всепропускающего" типа, для других типов фильтров значения элементов в таблице будут другими. Схема фильтра-прототипа шестого порядка представлена на рис. 12. Фильтры меньших порядков получаются путем отбрасывания соответствующих элементов α (начиная с больших).

Значения реальных параметров фильтров для заданного порядка, сопротивления нагрузки R н (Ом) и частоты среза f i (Гц) определяются следующим образом.

1. Для фильтра нижних частот:
- каждая индуктивность-прототип α1, α3, α5 (рис. 12) заменяется на реальную индуктивность по формуле L=αi Rн/2πf1,(1) где i=1,3,5, f1 — частота среза фильтра нижних частот;
- каждая емкость-прототип α2, α4, α6 заменяется на реальную емкость по формуле C=αi /2πf1Rн,(2) где i=2,4,6.

2. Для фильтра верхних частот (расчет происходит наоборот):
- каждая индуктивность-прототип α1, α3, α5 заменяется на реальную емкость C=1/2πf2Rнαi,(3) где i=1,3,5, f2 — частота среза фильтра верхних частот;
- каждая емкость-прототип заменяется на реальную индуктивность L=Rн/2πf2αi,(4) где i=2,4,6.

3. Для полосового фильтра:
- каждая индуктивность-прототип α1, α3, α5 заменяется на последовательный контур из реальных L- и C-элементов, рассчитываемых по формулам:
L=αiRн/2π(f2-f1),(5) С=1/4π2f02L,(6)
где — средняя частота полосового фильтра;
- каждая емкость-элемент α2, α4, α6 заменяется на параллельный контур из реальных L- и C-элементов, рассчитываемым по формулам:
С=αi/2π(f2-f1)Rн,(7) L=1/4π2f02C.(8)

ПРИМЕР РАСЧЕТА РАЗДЕЛИТЕЛЬНЫХ ФИЛЬТРОВ ДЛЯ ТРЕХПОЛОСНОЙ АС

Для расчета выбираем следующие параметры: фильтры всепропускающего типа второго порядка, то есть схема фильтра-прототипа будет включать только элементы α1, α2, Rн (рис. 12). Частоты раздела между низкочастотным и среднечастотным каналами равны 500 Гц, между средне- и высокочастотным каналами равны 5000 Гц. Сопротивление громкоговорителей (на постоянном токе): низкочастотного и среднечастотного Re=8 Ом, высокочастотного Re=16 Ом. Значение нормированных параметров элементов определим из табл. 1: α1=2,0, α2=0,5.

Значения реальных элементов фильтра нижних частот находим по выражениям (1) и (2):
L1НЧ = α1 Rн/2πf1 = 2,0∙8,0/(2∙3,14∙500) = 5,1 мГн,
C1НЧ = α1 /2πf1Rн = 0,5/(2∙3,14∙500∙8,0) = 20 мкФ.

Значения элементов полосового фильтра (для среднечастотного громкоговорителя) определяем в соответствии с выражениями (5)... (8):
L1СЧ = α1Rн/2π(f2-f1) = 2,0∙8,0/2∙3,14 (5000 — 500) = 0,566 мГн,
C1СЧ =1/4π2f02L = 1/4∙3,142∙5000∙500∙5,66∙10-4= 18 мкФ,
С2СЧ = α2/2π(f2-f1) Rн = 0,5/2∙3,14 (5000—500) ∙8,0 = 2,2 мкФ,
L2СЧ=1/4π2f02C2СЧ = 1/4∙3,142∙5000∙500∙2,2∙I0-6 = 4,6 мГн.

Значения элементов фильтра верхних частот определяем в соответствии с выражениями (3,4):
С1ВЧ = 1/2πf2 Rн α1 = 1/(2∙3,14∙5000∙2,0∙16) = 1,00 мкФ,
L2BЧ = Rн/2πf2 α2 = 16/(2∙3,14∙5000∙2,0) = 0,25 мГн.

Расчеты, выполненные по этим формулам, корректны, только если фильтры нагружены на активное (омическое) сопротивление. Чтобы согласовать параметры фильтров с реальным комплексным сопротивлением громкоговорителей, надо включить дополнительно параллельно каждому громкоговорителю согласующую цепь. Параметры такой цепи находятся из условия, чтобы комплексное сопротивление этой цепи Zсогл и комплексное сопротивление громкоговорителя Zгг компенсировали друг друга при параллельном включении и обеспечивали бы в сумме активное сопротивление, то есть 1/ Zсогл+1/ Zгг=1/Re.

Для расчета элементов такой цепи строится эквивалентная электрическая схема громкоговорителя (см. предыдущую статью в декабрьском номере МО за 2008 год), и по отношению к ней создается дуальная компенсирующая цепь. Схема эквивалентной цепи громкоговорителя и соответствующей компенсирующей цепи показаны на рис. 13. Для компенсации входного сопротивления низкочастотного громкоговорителя можно использовать упрощенную цепь (поскольку резонанс громкоговорителя находится значительно ниже частоты среза фильтра и не оказывает влияния на его параметры), состоящую из двух элементов Rk1=Re и Ck1=Lvc/Re2, где Re и Lvc — сопротивление и индуктивность звуковой катушки громкоговорителя.

Для средне- и высокочастотного громкоговорителя полная компенсирующая цепь включается, только если частота среза и резонансы громкоговорителей находятся близко друг от друга — в противном случае достаточно применять упрощенную цепь (расчет параметров полной цепи приведен в книге Алдошина И. А., Войшвилло А. Г. "Высококачественные акустические системы"). Кроме того, в схему иногда включаются дополнительно режекторные фильтры, чтобы убрать отдельные пики на амплитудно-частотной характеристике.

Пример схемы фильтров для трехполосной акустической системы с учетом согласующих цепей режекторного звена для среднечастотного громкоговорителя и дополнительного Г-образного аттенюатора, состоящего из двух резисторов для выравнивания уровней по звуковому давлению между НЧ-, СЧ- и ВЧ-громкоговорителями, показан на рис. 14.

В настоящее время для расчета фильтрующе-корректирующих цепей используются компьютерные методы оптимального синтеза линейных электронных схем. Для этого задаются структура фильтра и начальные значения элементов, затем производится расчет суммарных выходных значений АЧХ, ФЧХ и ГВЗ с учетом реальных измеренных параметров громкоговорителей, размещенных в корпусе, и путем целенаправленного изменения элементов схемы минимизируется разница между реальными и заданными параметрами. Применение методов оптимального проектирования позволяет обеспечить наилучшее широкополосное согласование параметров фильтров и громкоговорителей и получить оптимально достижимое значение параметров акустической системы.

Сейчас активно проводятся исследования по применению цифровых фильтров-процессоров в акустических системах, что позволяет перестраивать параметры системы в реальном времени в зависимости от вида звукового сигнала, а также обеспечивать оптимальное согласование характеристик акустической системы с параметрами помещения, но эта техника находится еще в начале своего развития и пока не нашла широкого применения в промышленных разработках.

Тема сведения акустических систем довольно популярна среди радиолюбителей. Этому способствует не только желание созидать, благо динамиков нынче на любой бюджет, но также и неудовлетворительное качестве серийной акустики. Изготовление фильтров требует как правило большого опыта, отчасти эмпирического, так как строгий математический расчет в лице симуляций никак не отражает звучание, и тем более не может дать ответ как сводить. Примерная прикидка не всегда дает ожидаемые результаты.

Виной тому отсутствие внятной теории именно сведения, а не электрических фильтров, с ними все ясно, чего нельзя сказать про сведение, где все базируется на нюансах которые в литературе как правильно не описаны. Цель данной статьи поведать некоторые особенности проектирования фильтров на реальном примере. В этой статье, к величайшему сожалению, не будет полноценного расчета или инструкции как брать и делать, ибо каждый случай уникален и требует персонального рассмотрения, и в лучшем случае можно указать на что обратить внимание и задать вектор размышлений в целом.

Важные характеристики АС

Для начала разберёмся чем характеризуется акустическая система. Тут три характеристики: амплитудная, фазовая и импедансная .

  • АЧХ считается наиболее важной, так как больше определяет звучание, впрочем не в ней счастье, ровная АЧХ еще не гарантия хорошего звука.
  • ФЧХ сама о себе не слышна, может быть слышен резкий перегиб фазы в точке раздела.
  • ИЧХ вовсе на звучание не влияет, зато влияет на усилитель, но не на каждый, а лишь на тот у которого высокое внутреннее сопротивление, в частности ламповые.

Из-за кривого импеданса многие колонки могут не спеться с лампой, вся неровность импеданса вылезет в АЧХ. В каком-то случае это может пойти на пользу, но надеяться на это не стоит, хотя бы потому, что такая акустика будет крайне чувствительна к усилителю, станут слышны лампы, их режимы, а сравнение с каменным усилителем становится вообще не корректным.

Потому, если задаться цель построить акустику мало чувствительную к усилителю, необходимо обеспечить постоянство импеданса во всем диапазоне частот, а это накладывает определенные ограничения. В частности это обязывает применять фильтра настроеные на равную частоту среза и имеющие равную добротность.

Это правило позволяет для настройки фильтра контролировать только линейность импеданса, что исключает необходимость измерения АЧХ фильтров и в случаи отсутствия хорошего микрофона в измерении ачх динамиков, то есть можно обойтись минимальным набором приборов: генератором (возможно программным) и вольтметром.

Практическая работа

Плавно переходим от теории к практике. Достались мне винтажные колонки под названием Kompaktbox B 9251. И первое что было сделано - произведено прослушивание.

С холодным камнем звук был в среднем не плох, а если говорить конкретно, то местами хороший, а местами как попало. С теплой лампой играть вообще отказались. На основе этих наблюдений был сделан вывод о наличии глубоко зарытого потенциала. Вскрытие показало, что немецкие инженеры решили обойтись одним единственным конденсатором последовательно с ВЧ головкой. Измерение АЧХ дало страшную картину. На рисунке АЧХ одной колонки, кривая с глубокой дыркой на 6 кгц из-за плохого контакта разъема, на нее внимание не обращать. АЧХ отдельно ВЧ и НЧ приведены ниже.

Частота раздела

Тут самое время задуматься о частоте раздела. Обычно частота раздела выбирается на ровных горизонтальных участках, вдали от резонансов и завалов, стараясь обойти внезапные неравномерности как потенциальные источники искажений... А если вспомнить что существует фаза, о которой мало известно, а если известно, то векторно ачх на бумажке не сложишь, а из-за кривизны фаз даже на идеально ровной ачх что-то вылезет, что-то провалится в большей или меньшей степени. Также надо помнить что может дать сам динамик, особенно ВЧ, скажем не надо заставлять дюймовый купольник играть от двух, а тем более одного килогерца, даже если он способен их отыграть по АЧХ.

Не забывайте, что большой ход порождает интермодуляционные искажения, поэтому каждому размеру динамика соответствует свой диапазон частот. В свете вышесказанного понятие частоты раздела размазывается на область, куда стоить сводить, а конечную точку подбирать иначе, например на слух. Или вовсе не подбирать, но про это чуть позже.

Итак, смотрим какие уникальные динамики нам достались. Высокочастотник начинает валить с 1,3 кгц, значит ниже его пускать нельзя. С другой стороны низкочастотник пытается играть по самые 10 кгц, с переменным успехом. Однако здравый смысл подсказывает, что выше килогерца его пускать плохая затея. И что спрашивается делать, если рабочие диапазоны динамиков не пересекаются?

Тут есть два варианта: если спады имеют адекватную крутизну, то лучше всего сводить в ямку, особенно если ямка получается широкой. В случае же нашем, когда спады круты как обрывы, надо держатся подальше от самого крутого из них. Чаще всего это может случится с высокочастотником, им всегда тяжко работать у нижней границы диапазона, поэтому им целесообразнее облегчить жизнь возлагая воспроизведение нижней части диапазона на НЧ динамик, который отыграет хоть плохо, но не нагадит. Поэтому ограничиваем диапазон участком от 1,5 кгц до 2,2 кгц.

Порядок фильтра и его добротность

Следующий параметр, с которым надо определиться - это порядок фильтра и его добротность. В данной статье будут рассматриваться два порядка, первый и второй.

  • С первым все просто: есть катушка, есть конденсатор, считаем их параметры под требуемую частоту среза и при надобности корректируем значения до получения желаемой АЧХ, ФЧХ, ИЧХ.
  • Со вторым порядком по-хитрее, там уже две катушки и два конденсатора. От значений номиналов зависит такой параметр как добротность, он определяет крутизну спада АЧХ и в некоторой степени сдвиг фазы. Поскольку влияние фазового сдвига и крутизны умозрительно не прикинешь, остается просто выбрать в какую сторону думать. А думать тут в сторону низкой добротности, читай больше индуктивности в катушках, меньше емкости в конденсаторах.

Как выбрать порядок. Тут руководствуются уже знакомыми соображениями о том, на что способны излучатели, в особенности высокочастотник. Если большой ход ему противопоказан (как в нашем случае) то предпочтение отдаем второму порядку.

Для полноты картины следует упомянуть, что порядок также определяет степень совместной работы динамиков, но это уже информация для самостоятельного размышления.

Импедансная характеристика динамиков

Когда с примерными параметрами все более или менее ясно, самое время переходить к практике. Снимаем импедансную характеристику динамиков. С целью оценки сопротивления на графике имеется лесенка с шагом в один Ом. Скачек на 110 герцах это переключение с 10 Ом на 20.

Разумеется с такими горбами ни один фильтр нормально, и уж тем более расчетно работать не будет, особенно фильтр НЧ. Фильтру ВЧ этот подъем работать в общем то не мешает, однако как упоминалось ранее такой подъем на конце диапазона приведет к подъему высоких частот, в случае если усилитель имеет высокое сопротивление. Это можно использовать и во благо, оставив подъем небольшим.

Для выравнивания этих подъемов применяют так называемую цепочку Цобеля. Она состоит из последовательно включенных резистора и конденсатора. Проще всего ее подобрать методом научного тыка: берется реостат, горсть конденсаторов, и все это двигается пока не получится ровная линия.

Для примерного представления что от чего зависит привожу набор графиков для различных емкостей и сопротивлений. Ступенька начинается с 10 Ом.

Зная минимальное сопротивление НЧ звена, нужно привести к такому же и ВЧ звено. Тут много вариантов как соединить два резистора и цепочку Цобеля, и каждый кто решился на такой отважный шаг как сведение сам способен определить вид подключения и номиналы резисторов, поэтому описывать данную процедуру здесь излишне. Конкретно в данных колонках по результатам предварительного прослушивания решено было оставить родные резисторы на 2,2 ома и цепочку Цобеля параллельно ВЧ динамику.

Сведение фильтров

Теперь начинается финальный этап - сведение фильтров. Пора намотать катушки... или не намотать? Мотать всегда лень, нет провода, каркасов, конкретных значений индуктивности. В виду этих причин поискав в хламе нашлись пары катушек на 0,8 мкг и 3 мкг - на них и пришлось строить. В крайнем случаи всегда же можно домотать или отмотать лишнее.

По графику видно, что раздел попал в район 1,8 кгц, что вполне вписывается в задуманные границы. Подбором конденсаторов удалось добиться следующего импеданса. На частоте раздела имеется два бугорка, но их высота меньше полу ома - это не критично. Это не конечный его вид, в последствии был несколько увеличен резистор в цепочке Цобеля пищалки.

На приведенных выше картинках АЧХ как самого фильтра, так и АЧХ динамиков с его включением.

Фазировка динамиков

На этом сведение подходит в концу. Остается только определиться с фазировкой динамиков. Тут есть как минимум три способа: на слух, по форме АЧХ и по фазовому сдвигу на частоте раздела. Если у динамиков АЧХ и ФЧХ в меру линейная, и фильтр фазу на разделе сильно не накручивает, то при смене правильной фазы на неправильную на частоте раздела появится глубокий провал, пропустить его сложно. В таком случае стоит подгонять фазу по по ее сдвигу. Сделать это можно осциллографом подавая на горизонтальную развертку сигнал с усилителя, а на вертикальное отклонение с микрофона.

Подают на вход усилителя синус с частотой раздела и не меняя взаимного расположения микрофона и колонки переключают ВЧ и НЧ динамики. По одинаковости фигур Лиссажу делается вывод о равенстве фаз излучателей. Этот метод хорошо подходит для фильтров первого порядка. С кривизной наших динамиков этот метод себя не оправдывает, поэтому сравниваем АЧХ при разной фазировке.

Второй вариант заметно хуже. Однако и первый не предел мечтаний, но так как двигать индуктивности катушек не просто, а ковыряться дальше уже лень, то все было оставлено как есть.

Сборка фильтров

В завершение пару слов про сборку. В фильтре применяются сравнительно большие емкости, 20 мкф, 27 мкф, а места в корпусе и так не много, бумаги или пленки не набрать. Приходится ставить электролиты. И если в фильтре НЧ звучание от их применения пострадает не сильно, а в цобеле их можно и вовсе не услышать, то в фильтре ВЧ звучанием конденсаторов пренебрегать опасно. Именно по этой причини были применены бумажный МБГЧ и пленочный К73-16, а все электролиты зашунтированы бумажными МБГО на 4 мкФ.

Не стоит увлекаться параллеленьем сильно разных конденсаторов. Основной критерий здесь тангенс угла потерь. Если к примеру поставить в шунт к бумажному конденсатору аудиофильский полипропилен, то скорее всего вылезут верха и будут они кислотные. Вероятно тут можно составить аналогию с внутренним сопротивлением, сравнив с ним тангенс угла потерь: чем он меньше, тем больше через конденсатор пройдет сигнала, а поскольку емкость у такого высококачественного конденсатора меньше, то через него пройдет только высокочастотная часть сигнала, отсюда и имеем повышенные уровень верхов. Но это только аналогия, для лучшего понимания влияния шунтов на звук.

Про то как надо разносить катушки и какой толщины применять провода статей написано предостаточно, повторяться здесь не буду. Проще показать картинку (тут неправильно припаян цобель высокочастотника, он должен стоять после резистора).

Звучание системы

И конечно же надо сказать про звук. Стало лучше, сцена получилась очень недурственная. Кривизна АЧХ особо не слышна, даже наоборот, подъем на середине поддает детальности, верхов как ни странно хватает. Был замечен интересный эффект на басу. Как можно заметить по АЧХ на сотне герц большой подъем, а за ним завал, разумеется качающего баса нет, но есть мид бас. К примеру партия гитары кажется немного просаженным, а нижний бас, партия бас гитары, переходит как бы в слышимую область и читается очень четко, создается впечатление наличия того самого низкого баса.

Конечно ящики маловаты, и порой слышно подбубнивание, для устранения этого эффекта в каждую колонку было добавлено по 30 грамм натуральней шерсти. В целом данная акустика играет тепло и мягко даже без лампового усилителя, сохраняя в звуке строгость и точность камня, а вот с теплой лампой получается перебор мягкости. Все же им нужен усилитель по-строже - триод или двухтакт, но это тема для следующих экспериментов. Специально для сайта - SecreTUseR.

Обсудить статью ФИЛЬТР ДЛЯ АКУСТИКИ

Юрий Садиков
г. Москва

В статье приведены результаты работ по созданию устройства, представляющего собой комплект активных фильтров для построения высококачественных трехполосных усилителей низкой частоты классов HiFi и HiEnd.

В процессе предварительных исследований суммарной АЧХ трехполосного усилителя, построенного с использованием трех активных фильтров второго порядка, выяснилось, что эта характеристика при любых частотах стыков фильтров обладает весьма высокой неравномерностью. При этом она весьма критична к точности настройки фильтров. Даже при небольшом рассогласовании неравномерность суммарной АЧХ может составить 10…15 дБ!

МАСТЕР КИТ выпускает набор NM2116, из которого можно собрать комплект фильтров, построенный на базе двух фильтров и вычитающего сумматора, не имеющий вышеперечисленных недостатков. Разработанное устройство малочувствительно к параметрам частот среза отдельных фильтров и при этом обеспечивает высоколинейную суммарную АЧХ.

Основными элементами современной высококачественной звуковоспроизводящей аппаратуры являются акустические системы (АС).

Самыми простыми и дешевыми являются однополосные АС, имеющие в своем составе один громкоговоритель. Такие акустические системы не способны с высоким качеством работать в широком диапазоне частот в силу использования одного громкоговорителя (головка громкоговорителя - ГГ). При воспроизведении разных частот к ГГ предъявляются различные требования. На низких частотах (НЧ) динамик должен обладать большим и жестким диффузором, низкой резонансной частотой и иметь большой ход (для прокачки большого объема воздуха). А на высоких частотах (ВЧ) наоборот – необходим небольшой легкий но твердый диффузор с малым ходом. Все эти характеристики совместить в одном громкоговорителе практически невозможно (несмотря на многочисленные попытки), поэтому одиночный громкоговоритель имеет высокую частотную неравномерность. Кроме этого в широкополосных громкоговорителях существует эффект интермодуляции, который проявляется в модуляции высокочастотных компонент звукового сигнала низкочастотными. В результате звуковая картина нарушается. Традиционным решением этой проблемы является разделение воспроизводимого диапазона частот на поддиапазоны и построение акустических систем на базе нескольких динамиков на каждый выбранный частотный поддиапазон.

Пассивные и активные разделительные электрические фильтры

Для снижения уровня интермодуляционных искажений перед громкоговорителями устанавливаются электрические разделительные фильтры. Эти фильтры также выполняют функцию распределения энергии звукового сигнала между ГГ. Их рассчитывают на определенную частоту разделения, за пределами которой фильтр обеспечивает выбранную величину затухания, выражаемую в децибелах на октаву. Крутизна затухания разделительного фильтра зависит от схемы его построения. Фильтр первого порядка обеспечивазатухание 6 дБ/окт, второго порядка - 12 дБ/окт, а третьего порядка - 18 дБ/окт. Чаще всего в АС используются фильтры второго порядка. Фильтры более высоких порядков применяются в АС редко из-за сложной реализации точных значений элементов и отсутствия потребности иметь более высокие значения крутизны затухания.

Частота разделения фильтров зависит от параметров применяемых ГГ и от свойств слуха. Наилучший выбор частоты разделения - при котором каждый ГГ АС работает в пределах области поршневого действия диффузора. Однако при этом АС должна иметь много частот разделения (соответственно ГГ), что значительно увеличивает ее стоимость. Технически обосновано, что для качественного звуковоспроизведения достаточно применять трехполосное разделение частот. Однако на практике существуют 4-х, 5-и и даже 6-и полосные акустические системы. Первую (низкую) частоту разделения выбирают в диапазоне 200…400 Гц, а вторую (среднюю) частоту разделения в диапазоне 2500...4000 Гц.

Традиционно фильтры изготавливаются с применением пассивных L, C, R элементов, и устанавливаются непосредственно на выходе оконечного усилителя мощности (УМ) в корпусе АС, согласно рис.1.

Рис.1. Традиционное исполнение АС.

Однако у подобного исполнения существует ряд недостатков. Во первых, для обеспечения необходимых частот среза приходится работать с достаточно большими индуктивностями, поскольку необходимо выполнить одновременно два условия – обеспечить необходимую частоту среза и обеспечить согласование фильтра с ГГ (иными словами нельзя уменьшить индуктивность за счет увеличения емкости, входящей в состав фильтра). Намотку катушек индуктивности желательно производить на каркасах без применения ферромагнетиков из-за существенной нелинейности их кривой намагниченности. Соответственно, воздушные катушки индуктивности получаются достаточно громоздкими. Кроме всего существует погрешность намотки, которая не позволяет обеспечить точно рассчитанную частоту среза.

Провод, которым ведется намотка катушек, обладает конечным омическим сопротивлением, что в свою очередь, приводит к уменьшению КПД системы в целом и преобразованием части полезной мощности УМ в тепло. Особенно заметно это проявляется в автомобильных усилителях, где питающее напряжение ограничено 12 В. Поэтому для построения автомобильных стереосистем часто применяют ГГ пониженного сопротивления обмотки (~2…4 Ом). В такой системе введение дополнительного сопротивления фильтра порядка 0,5 Ом может привести к уменьшению выходной мощности на 30%…40%.

При проектировании высококачественного усилителя мощности стараются свести к минимуму его выходное сопротивление для увеличения степени демпфирования ГГ. Применение пассивных фильтров заметно снижает степень демпфирования ГГ, поскольку последовательно с выходом усилителя подключается дополнительное реактивное сопротивление фильтра. Для слушателя это проявляется в появлении "бубнящих" басов.

Эффективным решением является использование не пассивных, а активных электронных фильтров, в которых все перечисленные недостатки отсутствуют. В отличие от пассивных фильтров, активные фильтры устанавливается до УМ как показано на рис.2.

Рис.2. Построение звуковоспроизводящего тракта с использованием активных фильтров.

Активные фильтры представляют собой RC фильтры на операционных усилителях (ОУ). Несложно построить активные фильтры звуковых частот любого порядка и с любой частотой среза. Расчет подобных фильтров производится по табличным коэффициентам с заранее выбранным типом фильтра, необходимым порядком и частотой среза.

Использование современных электронных компонентов позволяет изготавливать фильтры, обладающие минимальными значениями уровней собственных шумов, малым энергопотреблением, габаритами и простотой исполнения/повторения. В результате, использование активных фильтров приводит к увеличению степени демпфирования ГГ, снижает потери мощности, уменьшает искажения и увеличивает КПД звуковоспроизводящего тракта в целом.

К недостаткам такой архитектуры относится необходимость использования нескольких усилителей мощности и нескольких пар проводов для подключения акустических систем. Однако в настоящее время это не является критичным. Уровень современных технологий значительно снизил цену и размеры УМ. Кроме того, появилось достаточно много мощных усилителей в интегральном исполнении с отличными характеристиками, даже для профессионального применения. На сегодняшний день существует ряд ИМС с несколькими УМ в одном корпусе (фирма Panasonic выпускает ИМС RCN311W64A-P с 6-ю усилителями мощности специально для построения трехполосных стереосистем). Кроме того УМ можно расположить внутри АС и использовать короткие провода большого сечения для подключения динамиков, а входной сигнал подать по тонкому экранированному кабелю. Однако, если даже не удается установить УМ внутри АС, применение многожильных соединительных кабелей не представляет собой сложную проблему.

Моделирование и выбор оптимальной структуры активных фильтров

При построении блока активных фильтров было решено использовать структуру состоящую из фильтра высокой частоты (ФВЧ), фильтра средней частоты (полосовой фильтр, ФСЧ) и фильтра низкой частоты (ФНЧ).

Это схемотехническое решение было практически реализовано. Был построен блок активных фильтров НЧ, ВЧ и ПФ. В качестве модели трехполосной АС был выбран трехканальный сумматор, обеспечивающий суммирование частотных компонент, согласно рис.3.

Рис.3. Модель трехканальной АС с набором активных фильтров и ФСЧ на ПФ.

При снятии АЧХ такой системы, при оптимально подобранных частотах среза, ожидалось получить линейную зависимость. Но результаты оказались далеки от предполагаемых. В точках сопряжения характеристик фильтров наблюдались провалы/выбросы в зависимости от соотношения частот среза соседних фильтров. В итоге подбором значений частот среза не удалось привести проходную АЧХ системы к линейному виду. Нелинейность проходной характеристики свидетельствует о наличии частотных искажений в воспроизводимом музыкальном оформлении. Результаты эксперимента представлены на рис.4, рис.5 и рис.6. Рис.4 иллюстрирует сопряжение ФНЧ и ФВЧ по стандартному уровню 0.707. Как видно из рисунка в точке сопряжения результирующая АЧХ (показана красным цветом) имеет существенный провал. При раздвижении характеристик глубина и ширина провала увеличивается, соответственно. Рис.5 иллюстрирует сопряжение ФНЧ и ФВЧ по уровню 0.93 (сдвижка частотных характеристик фильтров). Эта зависимость иллюстрирует минимально достижимую неравномерность проходной АЧХ, путем подбора частот среза фильтров. Как видно из рисунка, зависимость явно не линейна. При этом частоты среза фильтров можно считать оптимальными для данной системы. При дальнейшем сдвиге частотных характеристик фильтров (сопряжение по уровню 0.97) наблюдается появление выброса в проходной АЧХ в точке стыка характеристик фильтров. Подобная ситуация показана на рис.6.

Рис.4. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.707.

Рис.5. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.93.

Рис.6. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.97 и появление выброса.

Основной причиной нелинейности проходной АЧХ является наличие фазовых искажений на границах частот среза фильтров.

Решить подобную проблему позволяет построение среднечастотного фильтра не в виде полосового фильтра, а с использованием вычитающего сумматора на ОУ. Характеристика такого ФСЧ формируется в соответствии с формулой: Uсч = Uвх – Uнч - Uвч

Структура такой системы представлена на рис.7.

Рис.7. Модель трехканальной АС с набором активных фильтров и ФСЧ на вычитающем сумматоре.

При таком способе формирования канала средних частот пропадает необходимость в точной настройке соседних частот среза фильтров, т.к. среднечастотный сигнал формируется вычитанием из полного сигнала сигналов фильтров высоких и низких частот. Кроме обеспечения взаимодополняющих АЧХ, у фильтров получаются так же и комплементарные ФЧХ, что гарантирует отсутствие выбросов и провалов в суммарной АЧХ всей системы.

АЧХ среднечастотного звена с частотами среза Fср1 = 300 Гц и Fср2 = 3000 Гц приведена на рис. 8. По спаду АЧХ обеспечивается затухание не более 6 дБ/окт, что, как показывает практика, вполне достаточно для практической реализации ФСЧ и получения качественного звучания СЧ ГГ.

Рис.8. АЧХ фильтра средних частот.

Проходной коэффициент передачи такой системы с ФНЧ, ФВЧ и ФСЧ на вычитающем сумматоре получается линейным во всем диапазоне частот 20 Гц…20 кГц, согласно рис. 9. Полностью отсутствуют амплитудные и фазовые искажения, что обеспечивает кристальную чистоту воспроизводимого звукового сигнала.

Рис.9. АЧХ системы фильтров с ФСЧ на вычитающем сумматоре.

К недостаткам подобного решения можно отнести жесткие требования к точности номиналов резисторов R1, R2, R3 (согласно рис.10, на котором представлена электрическая схема вычитающего сумматора) обеспечивающих балансировку сумматора. Эти резисторы должны использоваться с допусками на точность не более 1%. Однако при возникновении проблем с приобретением таких резисторов потребуется сбалансировать сумматор используя вместо R1, R2 подстроечные резисторы.

Балансировка сумматора выполняется по следующей методике. Сначала на вход системы фильтров необходимо подать низкочастотное колебание с частотой, намного ниже частоты среза ФНЧ, например 100 Гц. Изменяя значение R1 необходимо установить минимальный уровень сигнала на выходе сумматора. Затем на вход системы фильтров подается колебание с частотой заведомо большей частоты среза ФВЧ, например 15 кГц. Изменяя значение R2 опять устанавливают минимальный уровень сигнала на выходе сумматора. Настройка закончена.

Рис.10. Схема вычитающего сумматора.

Методика расчета активных ФНЧ и ФВЧ

Как показывает теория для фильтрации частот звукового диапазона необходимо применять фильтры Баттерворта не более второго или третьего порядка, обеспечивающие минимальную неравномерность в полосе пропускания.

Схема ФНЧ второго порядка представлена на рис. 11. Его расчет производится по формуле:

где a1=1.4142 и b1=1.0 - табличные коэффициенты, а С1 и С2 выбираются из соотношения C2/C1 больше равно 4xb1/a12, причем не следует выбирать отношение C2/C1 много большим правой части неравенства.

Рис.11. Схема ФНЧ Баттерворта 2-го порядка.

Схема ФВЧ второго порядка представлена на рис. 12. Его расчет производится по формулам:

где C=C1=C2 (задаются перед расчетом), а a1=1.4142 и b1=1.0 - те же табличные коэффициенты.

Рис.12. Схема ФВЧ Баттерворта 2-го порядка.

Специалисты МАСТЕР КИТ разработали и исследовали характеристики такого блока фильтров, обладающего максимальной функциональностью и минимальными габаритами, что является существенным при применении устройства в быту. Использование современной элементной базы позволило обеспечить максимальное качество разработке.

Технические характеристики блока фильтров

Принципиальная электрическая схема активного фильтра показана на рис.13. Перечень элементов фильтра приведен в таблице.

Фильтр выполнен на четырех операционных усилителях. ОУ объединены в одном корпусе ИМС MC3403 (DA2). На DA1 (LM78L09) собран стабилизатор питающего напряжения с соответствующими фильтрующими емкостями: С1, С3 по входу и С4 по выходу. На резистивном делителе R2, R3 и конденсаторе С5 выполнена искусственная средняя точка.

На ОУ DA2.1 выполнен буферный каскад сопряжения выходного и входных сопротивлений источника сигнала и фильтров НЧ, ВЧ и СЧ. На ОУ DA2.2 собран фильтр НЧ, на ОУ DA2.3 - фильтр ВЧ. ОУ DA2.4 выполняет функцию формирователя полосового СЧ фильтра.

На контакты X3 и X4 подается напряжение питания, на контакты X1, X2 - входной сигнал. С контактов X5, X9 снимается отфильтрованный выходной сигнал для тракта НЧ; с X6, X8 – ВЧ и с X7, X10 – СЧ трактов соответственно.

Рис.13. Схема электрическая принципиальная активного трехполосного фильтр

Перечень элементов активного трехполосного фильтра

Позиция Наименование Примечание Кол.
С1, С4 0,1 мкФ Обозначение 104 2
C2, С10, C11, C12, C13, C14, C15 0,47 мкФ Обозначение 474 7
С3, C5 220 мкФ/16 В Замена 220 мкФ/25 В 2
С6, C8 1000 пФ Обозначение 102 2
С7 22 нФ Обозначение 223 1
С9 10 нФ Обозначение 103 1
DA1 78L09 1
DA1 MC3403 Замена LM324, LM2902 1
R1…R3 10 кОм 3
R8…R12 10 кОм Допуск не более 1%* 5
R4…R6 39 кОм 3
R7 75 кОм - 1
Колодка DIP-14 1
Штыревой разъем 2-х контактный 2
Штыревой разъем 3-х контактный 2

Внешний вид фильтра показан на рис.14, печатная плата – на рис.15, расположение элементов – на рис.16.

Конструктивно фильтр выполнен на печатной плате из фольгированного стеклотекстолита. Конструкция предусматривает установку платы в стандартный корпус BOX-Z24A, для этого предусмотрены монтажные отверстия по краям платы диаметром 4 и 8 мм. Плата в корпусе крепится двумя винтами-саморезами.

Рис.14. Внешний вид активного фильтра.

Рис.15. Печатная плата активного фильтра.

Рис.16. Расположение элементов на печатной плате активного фильтра.

С целью снижения интермодуляционных искажений при звуковоспроизведении громкоговорители Hi-Fi систем составляют из низкочастотных, среднечастотных и высокочастотных динамических головок. Их подключают к выходам усилителей через разделительные фильтры, представляющие собой комбинации LC фильтров нижних и верхних частот.

Ниже приведена методика расчета трехполосного разделительного фильтра по наиболее распространенной схеме.

Частотная характеристика разделительного фильтра трехполосного громкоговорителя в общем виде показана на рис. 1. Здесь: N - относительный уровень напряжения на звуковых катушках головок: fн и fв - нижняя и верхняя граничные частоты воспроизводимой громкоговорителем полосы; fр1 и fр2 - частоты раздела.

В идеальном случае выходная мощность на частотах раздела должна распределяться поровну между двумя головками. Это условие выполняется, если на частоте раздела относительный уровень напряжения, поступающего на соответствующую головку, снижается на 3 дБ по сравнению с уровнем в средней части ее рабочей полосы частот.

Частоты раздела следует выбирать вне области наибольшей чувствительности уха (1... 3 кГц). При невыполнении этого условия, из-за разности фаз колебаний, излучаемых двумя головками на частоте раздела одновременно, может быть заметно "раздвоение" звука. Первая частота раздела обычно лежит в интервале частот 400... 800 Гц, а вторая - 4... 6 кГц. При этом низкочастотная головка будет воспроизводить частоты в диапазоне fн...fp1. среднечастотная - в диапазоне fp1... fр2 и высокочастотная - в диапазоне fр2...fв.

Один из распространенных вариантов электрической принципиальной схемы трехполосного громкоговорителя приведен на рис. 2. Здесь: B1 - низкочастотная динамическая головка, подключенная к выходу усилителя через фильтр нижних частот L1C1; В2 - среднечастотная головка, соединенная с выходом усилителя через полосовой фильтр, образованный фильтрами верхних частот C2L3 и нижних частот L2C3. На высокочастотную головку В3 сигнал подается через фильтры верхних частот C2L3 и C4L4.

Расчет емкостей конденсаторов и индуктивностей катушек производят исходя из номинального сопротивления головок громкоговорителя. Поскольку номинальные сопротивления головок и номинальные емкости конденсаторов образуют ряды дискретных значений, а частоты раздела могут варьироваться в широких пределах, то расчет удобно производить в такой последовательности. Задавшись номинальным сопротивлением головок, подбирают емкости конденсаторов из ряда номинальных емкостей (или суммарную емкость нескольких конденсаторов из этого ряда) такими, чтобы получившаяся частота раздела попадала в указанные выше частотные интервалы.

Тип конденсатора Емкость, мкФ
МБМ 0,6
МБГО, МВГП 1; 2; 4; 10
МБГП 15; 26
МБГО 20; 30

{mospagebreak}Емкости конденсаторов фильтров С1...С4 для различных сопротивлений головок и соответствующие значения частот раздела приведены в табл 2.

Zг,0м 4.0 4.5 5.0 6.5 8.0 12,5 15
С1,C2, мкф 40 30 30 20 20 15
fp1, Гц 700 840 790 580 700 - 520
С3,С4, мкф 5 5 4 4 3 2 1,5
fр2,кГц 5,8 5,2 5 4,4 4,8 4,6 5,4

Легко видеть, что все значения емкостей могут быть либо непосредственно взяты из номинального ряда емкостей. либо получены параллельным соединением не более чем двух конденсаторов (см. табл. 1).

После того как емкости конденсаторов выбраны, определяют индуктивности катушек в миллигенри по формулам:

В обеих формулах: Zг-в омах; fp1, fр2 - в герцах.

Поскольку полное сопротивление головки является частотнозависимой величиной, для расчета обычно принимают указанное в паспорте головки номинальное сопротивление Zг, оно соответствует минимальному значению полного сопротивления головки в диапазоне частот выше частоты основного резонанса до верхней граничной частоты рабочей полосы. При этом надо иметь в виду, что фактическое номинальное сопротивление различных образцов головок одного и того же типа может отличаться от паспортного значения на ±20%.

В некоторых случаях радиолюбителям приходится использовать в качестве высокочастотных головок имеющиеся динамические головки с номинальным сопротивлением, отличающимся от номинальных сопротивлений низкочастотной и высокочастотной головок. При этом согласование сопротивлений осуществляют, подключая высокочастотную головку В3 и конденсатор С4 к различным выводам катушки L4 (рис. 2), т. е. эта катушка фильтра играет одновременно роль согласующего автотрансформатора. Катушки можно намотать на круглых деревянных, пластмассовых или картонных каркасах с щечками из гетинакса. Нижнюю щечку следует сделать квадратной; так ее удобно крепить к основанию - гетинаксовой плате, на которой крепят конденсаторы и катушки. Плату крепят шурупами ко дну ящика громкоговорителя. Во избежание дополнительных нелинейных искажений катушки должны выполняться без сердечников из магнитных материалов.

Пример расчета фильтра.

В качестве низкочастотной головки громкоговорителя используется динамическая головка 6ГД-2, номинальное сопротивление которой Zг=8 Ом. в качестве среднечастотной - 4ГД-4 с таким же значением Zг и в качестве высокочастотной - ЗГД-15, для которой Zг=6,5 Ом. Согласно табл. 2 при Zг=8 Ом и емкости С1=С2=20 мкф fp1=700 Гц, а при емкости С3=С4=3 мкф fр2=4,8 кГц. В фильтре можно применить конденсаторы МБГО со стандартными емкостями (С3 и С4 составляют из двух конденсаторов).

По приведенным выше формулам находим: L1=L3=2,56 мГ; L2=L4=0,375 мГ (для автотрансформатора L4 - это значение индуктивности между выводами 1-3).

Коэффициент трансформации автотрансформатора

На рис. 3 показана зависимость уровня напряжения на звуковых катушках головок от частоты для трехполосной системы, соответствующей примеру расчета. Амплитудно-частотные характеристики низкочастотной, среднечастотной и высокочастотной областей фильтра обозначены соответственно НЧ, СЧ и ВЧ. На частотах раздела затухание фильтра равно 3,5 дБ (при рекомендуемом затухании 3 дБ).

Отклонение объясняется отличием полных сопротивлений головок и емкостей конденсаторов от заданных (номинальных) значений и индуктивностей катушек от полученных расчетом. Крутизна спада кривых НЧ и СЧ составляет 9 дБ на октаву и кривой ВЧ - 11 дБ на октаву. Кривая ВЧ соответствует несогласованному включению громкоговорителя 1 ГД-3 (в точки 1-3). Как видно, в этом случае фильтр вносит дополнительные частотные искажения.

Примечание от авторов:

В приводимой методике расчета принято, что среднее звуковое давление при одной и той же подводимой электрической мощности для всех головок имеет примерно одинаковое значение. Вели же звуковое давление, создаваемое какой-либо головкой, заметно больше, то для выравнивания частотной характеристики громкоговорителя по звуковому давлению эту головку рекомендуется подключать к фильтру через делитель напряжения, входное сопротивление которого должно быть равно принятому при расчете номинальному сопротивлению головок.

РАДИО N 9, 1977 г., с.37-38 E. ФРОЛОВ, г. Москва



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!