Приемники прямого усиления. Радиоприёмник прямого усиления СВ-диапазона Приемник прямого усиления с высокой чувствительностью

Каким может быть твой первый конструктивно законченный приемник прямого у синения? Такой вопрос, несомненно, ты уже не раз задавал себе.

В журнале «Радио», в радиотехнических брошюрах ft книгах, выпускаемых, например, издательствами ДОСААФ, «Радио и связь», «Детская литература», описано много любительских приемников прямого усиления. Разные по сложности, все они сходны по принципу работы, И в каждом из них ты без труда можешь рассмотреть те элементы и узлы, с которыми уже экспериментировал на предыдущих практикумах.

На этом практикуме предлагаю на выбор два варианта приемника прямого усиления 2- V -3, один из них рефлексный, обе — с двухтактным усилителем мощности, но усилитель НЧ одного из приемников трансформаторный, а другого — бестрансформаторный.

Рефлексный 2-V-3. На прилавках магазинов, торгующих радиотоварами, есть наборы деталей и материалов, пред назначенные для самостоятельной сборки малогабаритных приемников прямого усиления. Один из таких наборов под названием «Сверчок» и предлагается тебе как первый вариант приемника.

Набор «Сверчок» содержит все детали и материалы, включая даже припой и канифоль, необходимые для сборки рефлексного приемника 2-V-3 с внутренней магнитной антенной. Правильно смонтированный и налаженный приемник обеспечивает громкий прием местных и наиболее мощных отдаленных радиовещательных станций, работающих в диапазоне волн длиной примерно от 250 до 1500 м. Выходная мощность приемника около 100 мВт, Для его питании можно использовать батарею «Крона», аккумуляторную батарею 7Д-0.1, две батареи 3336Л, соединенные последовательно, а в домашних условиях — сетевой блок питания, смонтированный на десятом практикуме.

Принципиальная схема этого приемника показана на рис, 76. Как видишь, приемник лятитрамзисторный, В двуж-каскадном усилителе ВЧ работают транзисторы V1 и V2, а в трехкаскадном усилителе НЧ — тот все транзистор V2 и транзисторы V 4 V 6. Каскад на транзисторе V -2, таким образом, является рефлексным, Роль детектора выполняет диод VЗ,

Как приемник работает? Входной настраиваемый контур магнитной антенны W 1 образуют катушка L1 c плоским ферритовым стержнем и конденсатором переменной емкости С1. Через конденсатор С2 к контуру можно подключить внешнюю антенну (гнездо Х1), что повышает громкость работы приемника. Модулированный высокочастотный сигнал станции, на волну которой настроен входной контур, через катушку свяжи L 2 поступает ив базу транзистора VI . Усиленный транзистором сигнал через катушку L 4, индуктивно связанную с коллекторной катушкой £Д подается на базу транзистора V 2 второго каскада усилителя ВЧ. С дросселя L5, являющегося высокочастотной нагрузкой этого транзистора, усиленный сигнал поступает через конденсатор С7 на диод V 3, детектируется им и далее, будучи уже низкочастотным сигналом, через резистор R 6 и катушку L 4 высокочастотного трансформатора LSL 4 попадает на базу транзистора V 2, работающего теперь как предварительный усилитель напряжения НЧ.

Для низкочастотного сигнала транзистор V 2 включен по схеме с общим коллектором и его низкочастотной нагрузкой служит резистор R 7. Создающееся на этом резисторе напряжение НЧ через электролитический конденсатор С9 и переменный резистор R 10, выполняющий роль регулятора громкости, поступает на базу транзистора V 4 второго каскада усилителя НЧ. Межкаскадный трансформатор Т1, включенный в коллекторную цепь этого транзистора, обеспечивает транзисторам V 5 и V 6 выходного каскада двухтактный режим работы.

Разберем несколько подробнее цепи транзисторов V 1 и V 2. Здесь резисторы R 5 и R 3 образуют делитель напряжения, с которого снимается и через катушку L 4 подается на базу транзистора V 2 (относительно его эмиттера) небольшое (около 0,1 В) отрицательное напряжение смещения. С этого же делителя через резистор R 6 отрицательное напряжение подается и на диод V 3, несколько открывая его и тем самым повышая эффективность работы его как детектора. Одновременно резистор R 6, диод V 3 и резистор R 7, являющийся нагрузкой транзистора V 2, образуют другой делитель, с которого на базу транзистора VI через резистор R 4 и катушку связи L 2 подается напряжение смещения, равное падению напряжения на резисторе R 7. При этом между эмиттером транзистора V 2 и базой транзистора VI создается отрицательная обратная связь по постоянному току, стабилизирующая работу этих транзисторов приемника. Во время приема сигналов мощных станций на резисторе R7 автоматически повышается напряжение НЧ, которое через высокочастотный фильтр, образуемый резистором R 4 и конденсатором С4, воздействует на базу транзистора VI и, изменяя режим его работы, ослабляет усиление. При относительно слабых сигналах радиостанций эта цепь автоматического регулирования усиления практически никак не влияет на работу приемника.

Коротко о функциях некоторых других элементов приемника. Резистор R 9 и переменный резистор R 10 образуют делитель, благодаря которому на базе транзистора V 4 создается фиксированное напряжение смещения. Конденсатор С10 создает между коллектором и базой этого транзистора отрицательную обратную связь по переменному току, улучшающую качество работы каскада. Резисторы RI 1 и R 12 в цепи эмиттера этого же транзистора термостабилизируют работу каскада. В то же время они выполняют и роль делителя, с которого на базы транзисторов V 5 и V 6 через соответствующие им половины вторичной обмотки трансформатора Т1 подается начальное напряжение смещения. Чтобы между эмиттером и базой транзистора V 4 не возникала отрицательная обратная связь по переменному току, снижающая усиление каскада, резисторы R11 и R 12 зашунти-рованы электролитическим конденсатором СП. Резисторы R 13 и R 14, общее сопротивление которых 13,5 Ом (среди малогабаритных резисторов такого номинала нет), создают между эмиттерами и базами транзисторов V 5 и V 6 отрицательную обратную связь по постоянному..и, переменному току, что стабилизирует и улучшает качество работы выходного каскада.

Внешний вид готового приемника показан на рис. 77. Его корпус представляет собой коробку из цветного полистирола, в которую вдвигается вторая коробка чуть меньших размеров — задняя крышка. Положение крышки внутри корпуса зависит от. того, какая батарея используется для питания приемника, и фиксируется в нем стальной скобой-ручкой. Динамическая головка укреплена непосредственно на передней стенке корпуса. Все остальные детали приемника смонтированы на печатной плате, выполненной из фольгированного гетинакса.

Внешний вид платы и схема монтажа деталей на ней показаны на рис. 78. Батарея подключается с помощью колодки питания, входящей в комплект деталей приемника.

Катушка L 1 контура магнитной антенны намотана (на заводе) непосредственно на ферритовом стержне марки 400НН диаметром 8 и длиной 125 мм. Всего она содержит 150 витков провода ПЭВ-2 0,18, уложенных восемью секциями: семь секций по 20 витков и одна секция 10 витков. Катушку связи L 2,- число витков в которой (до 8 витков) подбирают при налаживании приемника, наматывают поверх катушки L 1 таким же проводом.

Высокочастотные трансформатор L 3 L 4 и дроссель L 5 намотаны (на заводе) проводом ПЭВ-2 0,18 на ферри-товых кольцах марки 2000НН размерами 10X6X5 мм. Катушка L 3 содержит 100 витков, катушка L 4 — 20 витков, дроссель L 5 — 195 витков.

Низкочастотные трансформаторы Т1 и Т2 намотаны на магнитопроводах Ш4Х6. Первичная (I) обмотка межкаскадного трансформатора Т1 содержит 2500 витков провода ПЭЛ 0,06, вторичная (II) — 350+350 витков такого же провода. Первичная (I) обмотка выходного трансформатора Т2 имеет 450+450 витков провода ПЭЛ 0,09, вторичная (II) — 102 витка провода ПЭЛ 0,23.

Другие детали приемника: конденсатор переменной емкости С1 типа КПМ-1; конденсаторы С2 и С10 — КТ(С4 — С6 — МБМ, С7 — КД, С13 — КЛС; электролитические конденсаторы СЗ, С8, С9 и С12 — К50-3 или ЭМ; постоянные резисторы типов МЛТ-0,125, ВС-0,125 или УЛМ; переменный резистор R 10, совмещенный с выключателем питания (S 1), типа СП-3; мощность малогабаритной динамической головки В1 0,1 Вт; коэффициент h21Э транзисторов не менее 40.

Токонесущие проводники печатной платы, представляющие собой тонкие, а местами к тому же узкие поло-» ски медной фольги, могут отслаиваться от гетинакса, если их перегреть. Поэтому прежде чем припаять ту или иную деталь к таким проводникам, убедись в ее исправности и соответствии ее номинала указанному на принципиальной схеме. Особое внимание удели правильности включения транзисторов и полярности диода, электролитических конденсаторов. Лишняя перепайка может оказаться опасной для печатных проводников.

Для выходного каскада постарайся отобрать транзисторы с возможно близкими коэффициентами h 21Э и обратными токами коллекторов Iко. В первом каскаде усилителя ВЧ используй тот из высокочастотных транзисторов, который имеет больший коэффициент h 21Э .

Монтируя на плате низкочастотные трансформаторы, предусмотри возможность измерения тока коллектора транзистора V 5 и суммарного тока коллекторов транзисторов V 6 и V 7. Для этого штырьки верхнего (по схеме) вывода первичной обмотки трансформатора ТУ и среднего (тоже по схеме) вывода первичной обмотки трансформатора Т2 оберни.узкими полосками конденсаторной бумаги, чтобы временно изолировать их от платы. Для измерения коллекторных токов миллиамперметр будешь включать между этими штырьками и идущими к ним печатными проводниками отрицательного полюса батарей.

Приемник, смонтированный из заведомо исправных деталей и точно по принципиальной схеме начинает работать сразу после включения питания. Но для транзисторов надо подобрать наиболее выгодные режимы работы.

Ориентировочные токи покоя коллекторных цепей и напряжения на электродах транзисторов приведены в таблице.

Транзисторы

Ток коллектора, Iк, мА

Напряжение коллектора, Uк, в

Напряжение базы, Uб, В

Напряжение эмиттера, Uэ. в

Для транзисторов V 5 и V 6 указан суммарный ток их коллекторов. Напряжения на электродах транзисторов измерены высокоомным вольтметром относительно плюсового проводника при напряжении источника питания 9 В.

Режим работы транзисторов V 5 и V 6 определяется падением напряжения на резисторе R 12, сопротивление, которого зависит от режима транзистора V 4. В связи с этим сначала подбери резистор R 9, чтобы установить рекомендуемый ток коллектора транзистора V 4, а затем подбором резистора R 12 — суммарный ток коллекторов транзисторов V 5 и V 6. С увеличением сопротивления резистора R 12 отрицательные напряжения на базах и выходного каскада увеличиваются.

Когда режимы транзисторов V 4... V 6 установлены, выводные штырьки обмоток трансформаторов припаяй к печатным проводникам платы.

Коллекторные токи транзисторов V 1 и V 2 устанавливай подбором резистора R 5 делителя напряжения R 5 R 3. Чтобы токи увеличить, сопротивление этого резистора надо уменьшить, а чтобы токи уменьшить, сопротивление резистора следует увеличить. Если потребуется подогнать коллекторный ток только транзистора V 1, сделать это можно подбором резистора R1. Таким образом, резисторы R 5 и R 1 Надо впаивать окончательно только тогда, когда они будут подобраны.

Резистор R 2 не является обязательным элементом высокочастотного каскада, поэтому при первом испытании приемника его может и не быть. В случае самовозбуждения каскада попробуй поменять местами выводы катушек L 3 или L 2. Если это не поможет, тогда подключи резистор R 2 параллельно участку эмиттер — коллектор транзистора или параллельно катушке L 3.

Только ли из набора готовых деталей можно собрать такой или подобный ему приемник? Нет, конечно. Катушки магнитной антенны и высокочастотного трансформатора можно намотать самому, низкочастотные трансформаторы приобрести (пригодны от любых транзисторных приемников с двухтактным трансформаторным выходом) или тоже намотать самому, корпус приемника склеить из цветного органического стекла, причем монтажная плата необязательно должна быть печатной — монтаж лложет быть « навесным.

Бестрансформаторный 2-V-3. Принципиальную схему второго варианта приемника прямого усиления ты видишь на рис. 79. Этот приемник, как и приемник первого варианта, тоже 2- V -3 и тоже с двухтактным усилителем мощности. Но он не рефлексный и бестрансформаторный.

Рассмотри внимательно схему. В ней почти все тебе уже знакомо. Двухкаскадный усилитель ВЧ на транзисторах VI и V 2 знаком по девятому практикуму, трех каскадный усилитель НЧ на транзисторах V 5 V 8 — по одиннадцатому, детектор на диодах УЗ и V 4 — по седьмому, а способ термостабилизации режимов работы транзисторов — по двенадцатому практикуму.

Не знаком тебе способ включения резистора Rl 5 t Этот резистор совместно с резистором R 16 .образует делитель, с которого на базу транзистора V 6 подается напряжение смещения. Но его правый (по схеме) вывод соединен не с отрицательным проводником источника питания, как было в аналогичном усилителе одиннадцатого практикума, а с эмиттерами транзисторов V 7 и V 8 выходного каскада, то есть с точкой, к которой подключена динамическая головка В1 (через электролитический конденсатор С13). Что это дает? При таком включении резистора R 15 между выходом усилителя и базой транзистора V 6 создается отрицательная обратная связь по переменному току, термостабилизирующая и улучшающая качество работы усилителя.

Попробуй предварительно собрать и наладить приемник на макетной панели, и только после этого начисто монтируй детали на постоянной плате из прочного изоляционного материала. Что же касается самой конструкций готового приемника, этот вопрос ты,-видимо, сможешь успешно самостоятельно решить. Многое в ней можно заимствовать из конструкций промышленных приемников.

Все транзисторы, конденсаторы, резисторы и магнитную антенну можно смонтировать на одной общей плате размерами примерно 175X70 мм (рис. 80), а переменный резистор R 9, объединенный с выключателем питания (S 1), и динамическую головку укрепить на лицевой панели подходящего готового или самодельного корпуса. Шкалу настройки приемника сделай в виде меток или цифр на диске, насаженном на ось конденсатора переменной емкости контура магнитной антенны.

Монтажную плату выпили из листового гетинакса.или текстолита толщиной 1,5...2 мм. В качестве опорных точек деталей используй отрезки голой предварительно выпрямленной и облуженной медной проволоки толщиной 1....1,5 мм и длиной 8...10 мм, вбитые в отверстия в плате или же запрессованные туда пустотелые заклепки (пистоны). Детали размещай с одной стороны платы, а соединения между ними делай монтажными проводника-. ми с другой стороны платы (на рис. 80 показаны штриховыми линиями). Динамическая головка приемника может быть мощностью 0,5...1 Вт, например 1ГД-18. С такой головкой качество звука будет значительно выше, чем с малогабаритной.

Для магнитной антенны (рис. 80 вверху) используй ферритовый стержень марки 400НН или 600НН диаметром 8 и длиной 140 мм. Катушки L 1 и L 2 наматывай проводом ПЭВ-1 или ПЭЛ 0,12...0,15 на отдельных бумажных цилиндрических гильзах-каркасах, которые бы с небольшим трением можно было перемещать по ферри-товому стержню. Для приема радиостанций средневолнового диапазона, катушка L 1 должна содержать 65...75 витков, L 2 — 5...6 витков, уложенных на каркасы в один слой, виток к витку, а для приема радиостанций длинноволнового диапазона — соответственно 180...200 и 10...12 витков. Контурную катушку длинноволнового диапазона желательно намотать четырьмя-пятью секциями по 35...40 витков в каждой секции (как катушка L 1 радиоприг емника «Сверчок»). Секционированная намотка уменьшает межвитковую емкость катушки, что при том же конденсаторе настройки несколько расширяет диапазон волн, перекрываемых контуром магнитной антенны.

В усилителе ВЧ вместо транзисторов П422 можно использовать любые другие высокочастотные транзисторы (П401...П403, П416, ГТ308) со статическим коэффициентом передачи тока не менее 60...80; в усилителе НЧ вместо транзисторов МП39 — аналогичные им низкочастотные транзисторы МП40...МП42, вместо МП35 — транзисторы МП36...МП38 с h21э не менее 50. Для выходного каскада подбери транзисторы по возможности с близкими коэффициентами h21Э и обратными токами Iко.

Как всегда, прежде чем включить питание, тщательно сверь монтаж с принципиальной схемой приемника — правильно ли включены транзисторы, диоды, электролитические конденсаторы, надежно ли подключена динамическая головка. Включив питание, сразу же измерь и, если надо, установи рекомендуемые режимы работы транзисторов. Общий ток покоя, потребляемый приемником не должен превышать 10...12 мА.

Напряжение симметрии на эмиттерах транзисторов V 7 и V 8, которое должно быть равно 4,5 В (при напряжении источника питания 9 В), устанавливай подбором резистора R 15, а их коллекторный ток в пределах 2... ...4 мА — подбором резистора R 18. Не забывай: во время замены этих резисторов усилитель должен быть обесточен, иначе у.выходных транзисторов из-за больших коллекторных токов может быть тепловой пробой.

Коллекторные токи транзисторов VI , V 2 и V 5, кото-торые могут быть в пределах 1...1.2 мА, устанавливай подбором относящихся к ним резисторов Rl , R 5 и RW делителей напряжения в их базовых цепях. Нормальным режим работы этих транзисторов можно также считать, если на их коллекторах относительно плюсового проводника будет примерно половина напряжения источника питания, а на базе относительно эмиттеров — около 0,1 В.

Качество работы тракта НЧ можешь проверить, подавая на его вход сигнал от радиотрансляционной сети — так же, как это ты делал при испытании аналогичного усилителя на одиннадцатом практикуме.

Диапазон волн, перекрываемый контуром магнитной антенны, устанавливай по шкале контрольного (промышленного) транзисторного или лампового приемника, настраивая оба приемника на одни и те же радиостанции и сверяя показания их шкал. Радиостанции наиболее длинноволнового участка диапазона должны прослушиваться при наибольшей емкости конденсатора С1. Чтобы этот участок сдвинуть в сторону более длинных волн, катушку L 1 надо переместить ближе к середине феррито-вого стержня или увеличить число витков, а чтобы сдвинуть в сторону более коротких волн — переместить ближе к концу стержня или уменьшить число витков.

Вот, пожалуй, то основное, что вместе с уже знакомыми тебе сведениями, надо сказать о монтаже и налаживании этого варианта приемника прямого усиления.

Литература: Борисов В. Г. Практикум начинающего радиолюбителя.2-е изд., перераб. и доп. — М.: ДОСААФ, 1984. 144 с., ил. 55к.

Структурная схема приемника прямого усиления без регенерации (рис. 8.6) включает в себя входную цепь, усилитель высокой (радио) частоты (УВЧ, УРЧ), детектор (Д) и усилитель низкой (звуковой) частоты (УНЧ, УЗЧ). Иногда перед УРЧ включают малошумящий усилитель (МШУ).

Входная цепь и УВЧ составляют высокочастотный тракт приемника и со­держат системы резонансных контуров, которые служат для получения мак­симальной мощности сигнала из антенны, а также выделяют требуемый сиг­нал из множества других сигналов и помех. МШУ (используемые при необ­ходимости) предназначены для снижения уровня собственных шумов прием­ника и определяют чувствительность приемников. В некоторых случаях при достаточной мощности принимаемого сигнала УВЧ может отсутствовать. Вы­деленная детектором (демодулятором) модулирующая функция, содержащая полезную информацию, усиливается и фильтруется от помех и других комби­национных частот в УНЧ. Его усиление определяется напряжением (мощ­ностью), которые необходимо подвести к оконечному устройству для его нормальной работы.

Настройка приемника на полезный сигнал осуществляется перестройкой по частоте входной цепи, МШУ и УВЧ. Синхронная перестройка по частоте всех этих блоков является непростой задачей. В диапазоне СВЧ технически трудно согласовать полосы пропускания приемника с шириной спектра по­лезного сигнала для фильтрации последнего от помех, несовпадающих по частоте с сигналом. Отмеченные факторы являются недостатком приемников прямого усиления.

Рис. 8.6. Структурная схема приемника прямого усиления

Литература: В.И. Нефедов, “Основы радиоэлектроники и связи”, Издательство «Высшая школа», Москва, 2002.

Радиоприемные устройства

22.1. Структурные схемы

Радиоприемник - устройство, соединяемое с антенной и служащее для осуществления радиоприема.

Радиоволны, излучаемые различными радиопередатчиками, по­падают на приемную антенну и создают в ней электрические ко­лебания, поэтому для радиоприемника антенна представляет собой источник радиосигнала. Так как на антенну попадает множество радиоволн, то входной сигнал приемника

состоит из полезного сигнала s(t ) и помехи п (t ). Множитель k (t ) учитывает изменение во времени коэффициента передачи канала связи и называется мультипликативной помехой. Помеха n (t ), добавляющаяся к сигналу, называется аддитивной. В общем слу­чае аддитивная помеха состоит из гармонических, импульсных и флуктуационных помех.

Гармоническими или сосредоточенными по частоте называют узкополосные помехи. Основные источники этих помех - другие радиопередатчики.

Импульсными или сосредоточенными во времени называют поме­хи, форма которых напоминает радиоимпульсы. Отличительным признаком импульсных помех служит неравенство

где t и - средняя продолжительность импульса; Т - среднее рас­стояние между импуль-сами.

К импульсным относятся помехи, порождаемые атмосферными разрядами, промышленными предприятиями, транспортными сред­ствами.

Флуктуационные помехи - широкополосные случайные непре­рывные колебания. Типичный пример флуктуационной помехи - белый шум (см. § 2.7). Флуктуационные помехи порождаются хаотическим движением носителей заряда. Эти помехи представ­ляют один из основных видов помех в космических каналах и некоторых наземных каналах микроволнового диапазона. К флуктуационным помехам относятся также собственные шумы прием­ника.

Простейшая схема приемника прямого усиления состоит из входной цепи, усилителя радиочастоты, детектора и усилителя звуковой частоты (рис. 22.1). Сигнал нужной частоты выделяется системами резонансных контуров, служащих входными цепями и нагрузкой усилителя радиочастоты. Перестройка приемника на нужную частоту осуществляется путем перестройки всех резонанс­ных контуров.

Простота радиоприемника прямого усиления только кажу­щаяся. Для получения узкой полосы пропускания приходится увеличивать число резонансных контуров и их добротности. Сле­довательно, усложняется перестройка приемника. Поэтому при­емники по схеме прямого усиления изготовляют весьма редко.

В настоящее время массовое применение находят супергетеро­динные радиоприемники (рис. 22.2). В таких приемниках осущест­вляется преобразование частоты принимаемого радиосигнала так, что спектр, сосредоточенный в окрестности частоты ω i , переносится на промежуточную частоту ω i . Преобразование частоты выполняет преобразователь, состоящий из смесителя и гетеродина - генера­тора опорного колебания. Принцип действия такого преобразова­теля рассмотрен в § 17.3. Наиболее часто промежуточная частота

либо
(22.2)

При перестройке входной цепи и усилителя радиочастоты из­меняется и частота гетеродина так, чтобы промежуточная частота ω п оставалась постоянной. Это обстоятельство позволяет приме­нять неперестраиваемые усилители промежуточной частоты (УПЧ). Такие УПЧ удается создать с хорошей частотной избирательно­стью. Поэтому основное усиление и частотную избирательность супергетеродинного приемника обеспечивает УПЧ. Входная цепь и усилитель радиочастоты выполняют предварительное выделение сигнала и ослабляют мощные мешающие радиосигналы.

Супергетеродинный радиоприемник, обладая принципиальными достоинствами, не лишен недостатков. Основной из них-побоч­ные каналы приема. Как известно из общей теории преобразова­ния частоты (см. § 17.3), в полосу пропускания УПЧ попадает не только сигнал, например, с частотой ω с = ω г + ω п, но и другие сигналы, частоты которых ω с (п , т ) удовлетворяют равенству

(22.3)

Основной побочный канал приема называется зеркальным. Частота этого канала ω зк отличается от частоты сигнала ω с на удвоенное значение промежуточной частоты: ω зк = ω с ± 2ω п. Ослаб­ление мешающих радиосигналов и помех с частотами зеркального канала и всех других побочных каналов выполняют полосовые фильтры, включаемые до преобразователя частоты, т. е. фильтры, входящие в состав входных цепей и усилителя радиочастоты. Полезно иметь в виду, что подавление побочных каналов приема облегчается при увеличении промежуточной частоты ω п, однако при этом затрудняется получение достаточно узкой полосы УПЧ.

Другой недостаток супергетеродинного приемника - возмож­ность возникновения комбинационных свистов. Такие свисты по­являются на некоторых частотах принимаемого сигнала ω с " = ω г - ω п, на которых ω п ", приблизительно равная частоте ω п, полу­чается в соответствии с (22.3) и путем более сложного преобра­зования. При этом условии УПЧ усиливает два сигнала с близ­кими частотами. Вследствие биений несущих этих сигналов появ­ляется низкочастотная огибающая с частотой |ω п - ω п "|, которая выделяется амплитудным детектором, затем усиливается и про­слушивается в виде свиста. Третий недостаток супергетеродинного приемника заключается в возможности создания радиопомех дру­гим приемникам, если колебание гетеродина попадает в антенну.

Все перечислерные недостатки в современных супергетеродин­ных приемниках устраняются путем рационального выбора про­межуточной частоты или двух промежуточных частот в приемниках с двойным преобразованием частоты, использованием смесителей, выполняющих почти идеально точное перемножение напряжений, и надежной развязкой гетеродина от входных цепей.

Кроме основных функциональных узлов, таких, как входные цепи, усилители радио-, промежуточной и звуковой частот, преоб­разователь частоты и детектор, схемы современных радиоприемни­ков дополняются устройствами и системами, качественно улуч­шающими технические и эксплуатационные показатели. Таковыми являются системы автоматического регулирования усиления и автоматической подстройки частоты.

Структурные и схемотехнические особенности, конструкция и элементная база радиоприемника определяются его назначением, условиями эксплуатации, диапазоном принимаемых волн.

По назначению приемники делят на радиовещательные, телеви­зионные, связные, радиолокационные, навигационные и др. Назна­чением приемника определяются свойства принимаемых сигналов. Например, радиовещательные приемники предназначены для при­ема речевых и музыкальных сигналов; телевизионные - для при­ема сигналов изображения и звука; связные - для приема теле­фонных и телеграфных сигналов, цифровых сигналов управления и др.

По условиям эксплуатации различают стационарные и неста­ционарные приемники. Как стационарными, так и нестационар­ными могут быть приемники различного назначения. Стационар­ными считаются приемники, не предназначенные для работы на подвижных объектах. К нестационарным относятся все приемники, устанавливаемые на подвижных объектах, например, космические, самолетные, корабельные, автомобильные, переносные и др.

Для реализации приемников промышленность выпускает специализирован­ные ИС, выполняющие функции одного или нескольких функциональных узлов. Такие примеры ИС приведены в предыдущих главах. Так, в качестве усилителя промежуточной и радиочастоты может применяться ИС К175УВ4 (см. рис. 14.17), преобразование частоты выполняет ИС 219ПС1 (см. рис. 17.9). Усилителем звуковых частот может служить ИС К174УН5 (см. рис. 15.7). Выпускаются также специализированные серии ИС. Для радиовещательных приемников пред­назначены ИС серии 235, для телевизионных - ИС серии К174 и др.

Структурные схемы приемников в зависимости от их назначе­ния дополняются специфическими функциональными узлами. Сложные связные приемники снабжаются устройствами програм­мной настройки. Приемники, предназначенные для приема цифро­вой информации, комплектуются устройствами последетекторной обработки, фильтрующими и декодирующими принятый сигнал. Эти устройства часто выполняются на базе МП. В телевизионных приемниках сигнал с выхода детектора разделяется на сигнал изображения и звука. Из сигнала изображения выделяют импульс­ные последовательности, необходимые для синхронизации генерато­ров строчной и кадровой развертки. Все эти преобразования вы­полняют специализированные ИС.

Линейная (высокочастотная) часть приемника представляет собой входную цепь и УВЧ, низкочастотная часть приемника – УНЧ.

Высокочастотная часть приемника содержит резонансные элементы, которые выделяют требуемый сигнал из множества других сигналов. В УВЧ, кроме селекции, также осуществляется и усиление сигнала.


Особенностью такого приемника является то, что фильтрация полезного сигнала по частоте, его усиление и детектирование осуществляется на несущей частоте принимаемого сигнала , поэтому его и называют приемником прямого усиления.

Принцип работы приемника прямого усиления .

Принятый антенной радиосигнал (как правило, смесь сигнала и помехи) через входную цепь поступает на вход усилителя высокой частоты. Здесь сигнал усиливается одним или несколькими каскадами.

Выходной сигнал УВЧ и поступает на вход детектора, где преобразуется в сигнал U Д (t)=U с (t)+U п (t), где U c (t) – сигнальная (полезная) составляющая, а U п (t) – помеховая составляющая, искажающая сообщение.

УНЧ усиливает сигнал U Д (t) до уровня, необходимого для нормальной работы выходного устройства (телефонов).

В некоторых приемниках при достаточной мощности входного сигнала детектор подключается непосредственно к входной цепи. Такие при­емники называются детекторными. Детекторные приемники име­ют низкую чувствительность и плохую избирательность, поэтому они нашли ограниченное применение.

Достоинствами приемников прямого усиления являются их простота, отсутствие дополнительных ка­налов приема.

Недостатками таких приемников являются: широкая полоса пропускания на высокой частоте; низкая чувствительность из-за высокого коэффициента шума; отличие формы АЧХ, в пределах диапазона рабочих частот, от прямоугольной; сложная перестройка по частоте.

Супергетеродинный приемник .

Недостатков приемника прямого усиления лишен супергетеродинный приемник (с преобразованием частоты).

Структурная схема супергетеродинного приемника представлена на рисунке 5.

Приемник состоит из входной цепи (ВЦ), усилителя высокой (радио) частоты, преобразователя частоты (ПЧ) (смеситель и гетеродин), усилителя промежуточной частоты (УПЧ), детектора и усилителя низкой (звуковой) частоты (УНЧ). Для повышения чув­ствительности и избирательности в данном приемнике, как правило, используется УВЧ с настраиваемым контуром.

Назначение ВЦ, УВЧ, детектора и УНЧ аналогично приемнику прямого усиления.



Известно, что в радиоприемниках, на высокой частоте, достаточно сложно технически обеспечить требуемую форму АЧХ, узкую полосу пропускания и большой коэффициент усиления. Однако эти сложности устраняются с помощью преобразования частоты, когда радиосигнал переносят на более низкую частоту называемую промежуточной .

Принципиальной особенностью супергетеродинного приемника является то, что частотная селекция полезного сигнала, основное усиление и его детектирование осуществляется на постоянной частоте, значительно меньшей частоты принимаемого сигнала , называемой промежуточной частотой.

В супергетеродинном приемнике перенос принимаемого радиосигнала на промежуточную частоту осуществляют с помощью преобразователя частоты.

ПЧ обеспечивает перенос спектра принимаемого радиосигнала с частоты на более низкую промежуточную частоту .

Структурная схема преобразователя частоты представлена на рисунке 6. На схеме: СМ – смеситель, Г – гетеродин, УПФ – узкополосный фильтр.

Рис. 5. Структурная схема супергетеродинного приемника

Рис. 6. Структурная схема преобразователя частоты

Характер преобразований, производимых в ПЧ, иллюстрируется аналитическими выкладками, представленными ниже.

Если радиосигнал, поступающий на вход ПЧ обозначить (для примера рассмотрим АМ-радиосигнал), а сигнал гетеродина , то на выходе СМ (рис. 6) будет сформирован сложный сигнал, содержащий составляющие как суммарной, так и разностной частоты:

где: k – коэффициент пропорциональности.

С помощью УПФ выделяется только составляющая на частоте . В результате на выходе преобразователя частоты формируется сигнал , спектр амплитуд которого показан на рисунке 7.

Особенность работы преобразователя частоты заключается в том, что он всегда формирует сигнал с частотой , и не реагирует на знак разности, хотя частота может быть больше или меньше . Изменять частоту выходного сигнала ПЧ можно путем изменения частоты, что очень упрощает настройку приемника на частоту сигнала .

Поскольку преобразователь частоты не способен определять знак разности частот сигналов f c и f г, поступающих на смеситель, то приемник может одновременно принимать радиосигналы нужной станции - с частотой и мешающей станции – с частотой зеркального канала, где . При этом частоты и располагаются на частотной оси симметрично (зеркально) относительно частоты гетеродина (рис. 7).


Поэтому, при наличии помехи с частотой f з, она, как и сигнал попадает в полосу пропускания УПЧ.

Для подавления помехи на зеркальной частоте используются специальные меры:

Полоса пропускания УВЧ выполняется такой, что не превышает 2f пр;

На входе УВЧ размещается синхронно перестраиваемый с УВЧ режекторный фильтр с частотой подавления f з;

В состав линейной части приемника включается специальная схема компенсации зеркальной помехи;

В приемнике используется двукратное или трехкратное преобразование частоты для повышения его избирательности.

На работу супергетеродинного приемника также могут оказывать негативное влияние и помехи на промежуточной частоте. Для уменьше­ния влияния таких помех, в приемнике используются заградительные (режекторные) фильтры.

Необходимо также отметить, что: результирующая АЧХ приемника получается в результате перемножения АЧХ УВЧ, СМ и УПЧ; коэффициент усиления линейной части приемника равен произведению коэффициентов усиления УВЧ, СМ и УПЧ. Полоса пропускания линейной части приемника определяется самым узкополосным элементом - УПЧ. При этом частота настройки и полоса пропускания УПЧ являются постоянными и при перестройке не меняются.

Таким образом, к достоинствам приемника можно отнести высокую избирательность и чувствительность, а к недостаткам - сложность, наличие кроме основного и побочных каналов приема (зеркального канала, канала на ).

Мы определили что, для увеличения чувствительности детекторного приемника можно применить принцип прямого преобразования частоты. Однако в этом случае часть выходного колебания (компоненту спектра с удвоенной частотой сигнала) приходится подавлять. Это означает, что мощность полезного сигнала на выходе умножителя (смесителя) будет в два раза меньше мощности сигнала на входе. Иными словами, коэффициент передачи смесителя не может превышать –3 дБ. В реальных схемах ситуация хуже за счет потерь в элементах умножителя. Активный умножитель (умножитель с усилением) ситуацию в корне не меняет, так как он усиливает не только сигнал, но и шум, а значит, коэффициент шума будет в лучшем случае останется точно таким же.

Для увеличения чувствительности радиоприемника (уменьшения коэффициента шума приемника) между входом синхронного детектора и выходом входного устройства приемника размещают малошумящий усилитель высокой частоты (УВЧ). Его коэффициент усиления рассчитывается по следующей формуле:

где U дет — напряжение на входе синхронного (квадратурного) детектора;
U а — напряжение на выходе антенны;
K вх. устр. — коэффициент передачи входного устройства.

Структурная схема приемника прямого усиления с квадратурным детектором, способным принимать сигнал с любым видом модуляции, приведена на рисунке 1.



Рисунок 1. Структурная схема радиоприемника прямого усиления

Применение усилителя высокой частоты позволяет поднять до нескольких десятков микровольт. Однако одновременно именно этот в основном будет определять . Здесь следует заметить, что схема, приведенная на рисунке 1, может быть определена и как схема прямого усиления, и как схема прямого преобразования. Все зависит от того, какой каскад будет определять избирательность по соседнему каналу и где будет сосредоточено основное усиление.

Если в схеме, приведенной на рисунке 1, основное усиление определяется усилителем низкой частоты, а избирательность по соседнему каналу обеспечивается ФНЧ на выходе квадратурного детектора, то эту схему рассматривают как . Выбор частотных параметров блоков схемы иллюстрируется рисунком 2.



Рисунок 2. Требования к характеристикам фильтров

Если же основная избирательность радиоприемника по соседнему каналу и его основное усиление, сосредоточено до квадратурного детектора, то ее рассматривают как приемник прямого усиления. В этом случае частотные параметры схемы радиоприемника выбираются в соответствии с рисунком 3.



Рисунок 3. Требования к характеристикам фильтров приемника прямого усиления

Так как в этом случае все параметры приемника определяются входным устройством и практически не зависят от параметров квадратурного детектора, то схему приемника прямого усиления можно представить в виде, показанном на рисунке 4.


Рисунок 4. Структурная схема приемника прямого усиления

Требования к фильтру низкой частоты квадратурного детектора в данной схеме значительно снижаются по сравнению со схемой прямого преобразования. Здесь фильтр низкой частоты должен подавить составляющие удвоенной частоты принимаемого радиосигнала и не исказить полезный сигнал.

В наихудшем случае расстройку частоты можно определить следующим образом:

и в этом случае расчет фильтра низкой частоты (ФНЧ) выполняется точно так же, как мы рассматривали в главе посвященной приемнику прямого преобразования.

Частотные параметры радиотракта приемника прямого усиления определяются рисунком 5. На этом рисунке показан спектр рабочего канала и спектры двух соседних радиоканалов. Полосовой приемника прямого усиления не должен искажать полезный сигнал и при этом подавлять спектр соседних каналов.



Рисунок 5. Частотные параметры радиотракта приемника прямого усиления

Известно, что расчет полосового фильтра ведется через расчет ФНЧ фильтра-прототипа, который рассчитывается точно также как и в случае приемника прямого преобразования. Воспользовавшись этими результатами можно определить, что потребуется полосовой фильтр не менее седьмого порядка.

Теперь определим, до какой частоты можно будет применять схему прямого усиления. Известно, что конструктивную добротность контура трудно получить больше 200. Учитывая, что у добротность контура с наибольшей добротностью отличается от добротности контура с наименьшей добротностью в пять раз, то для определения максимальной частоты воспользуемся добротностью:

Добротность контура определяется по следующей формуле:

Тогда максимальная рабочая частота для системы связи, использующих сигналы с полосой 9 кГц, может быть определена из следующего выражения:

Это означает, что область применения приемников прямого усиления ограничивается длинноволновым диапазоном. Радиолюбители применяют приемники прямого усиления и в средневолновом диапазоне, но это достигается за счет уменьшения подавления соседнего канала. Для систем профессиональной связи это неприемлемо.

Коэффициент усиления усилителя радиочастоты в схеме прямого усиления ограничивается внеполосными помехами, которые могут попасть на его вход и вызвать перегрузку. Приемники, собранные по схеме прямого усиления обычно разрабатываются на прием одной определенной частоты. Это обусловлено сложностью разработки перестраиваемого полосового фильтра. Принимаемая приемником прямого усиления частота определяется частотой настройки фильтра входного устройства. Учитывая, что данная схема применяется в основном в системах дистанционного управления, а они работают в СВЧ диапазоне, то в качестве частотно-избирательных цепей входного устройства обычно применяются фильтры на поверхностных акустических волнах.

Литература:

  1. "Проектирование радиоприемных устройств" под ред. А.П. Сиверса - М.: "Высшая школа" 1976
  2. "Радиоприемные устройства" под ред. Жуковского - М.: "Сов. радио" 1989
  3. Палшков В.В. "Радиоприемные устройства" - М.: "Радио и связь" 1984

Вместе со статьей "Приемник прямого усиления" читают:

Основной функцией радиоприемного устройства является извлечение полезной информации из принимаемого сигнала...
http://сайт/WLL/DetPrm.php

Первые приемники прямого преобразования появились на заре развития радиотехники, когда ещё не было радиоламп...
http://сайт/WLL/PrmPrjamPreobr.php

Для того чтобы решить проблему роста необходимой добротности с ростом несущей частоты, стали разбивать задачу на два этапа - перестройка по диапазону частот, и обеспечение избирательности по соседнему каналу...
http://сайт/WLL/PrmSupGeter.php

При двойном преобразовании частоты сначала переносят группу каналов на первую промежуточную частоту, выделяют ее, а затем выделяют рабочий канал на второй промежуточной частоте. Этот процесс...
http://сайт/WLL/PrmDvPreobr.php



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!